如图,在△ABC中,AB=AC,∠BAC=80°,点P在△ABC内,∠PBC=10°,∠PCB=20°,求∠PAB的度数

百度网友c8b51968f
2012-06-03 · TA获得超过6777个赞
知道大有可为答主
回答量:1625
采纳率:66%
帮助的人:917万
展开全部
首先这个题目有个条件给错了,“∠PCB=20°” 应该是“∠PCB=30°”
正确答案如下:
在BC下方取一点D,使得三角形ABD为等边三角形,连接DP、DC
所以AD=AB=AC
∠DAC=∠BAC-∠BAD=20
所以∠ACD=∠ADC=80
因为AB=AC,∠BAC=80
所以∠ABC=∠ACB=50
所以∠CDB=10=∠BPC
又∠DCB=30=∠PCB,
BC=CB
所以△BDC≌△BPC
所以PC=DC
又∠PCD=60
所以△DPC是等边三角形
所以△APD≌△APC
所以∠DAP=∠CAP=10
所以∠PAB=∠DAP+∠DAB=10+60=70

参考资料: http://zhidao.baidu.com/question/100974588.html

百度网友ed5dcba
2014-06-07
知道答主
回答量:8
采纳率:0%
帮助的人:6.6万
展开全部
自己想出来的做法,可能有点烦但绝对是正确的:
解:
以BP为对称轴作三角形BPC的轴对称图形BPC',PC'交AC于点D,连接CC',AC',AP。
∵∠PAB=10°,∠PBA=20°
∴∠BPC=150° 同理∠BPC'=150°
∴∠CPC'=∠PCC'=60°
由对称得:△BPC≌三角形BPC'
∴PC=PC',∠PC'B=20°
∴等边△CPC'
∴∠PC'C=60°
∵∠BC'P=20°
∴∠BC'C=80°
∵∠BAC=80°
∴A,B,C,C'四点共圆
∵∠PBC=∠PBC'=10°
∴∠CBC'=20°
∴∠CAC'=20°
∵∠BAC=80°,AB=AC
∴∠ACB=(180°-80°)/2=50°
∴∠PCA=30°
∴∠PDC=90°
∴PD=C'D(三线合一),∠APD=∠ADC'=90°
∵AD=AD
∴△ADP≌△ADC'(SAS)
∴∠PAD=∠CPC'=20°
∴∠PAB=80°-20°=60°
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
1652792119
2012-06-03 · TA获得超过601个赞
知道答主
回答量:398
采纳率:0%
帮助的人:170万
展开全部
因为AB=AC,∠BAC=80°所以∠ABC=∠ACB=50° 因为∠PBC=10°,所以∠PAB=40°
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(1)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式