在△ABC中,sinA=(sinB+sinC)/(cosB+cosC),则△ABC是什么三角形(详细过程)可不可以用和差化积以外的方法

 我来答
慕野清流
2012-06-03 · TA获得超过3.6万个赞
知道大有可为答主
回答量:5141
采纳率:80%
帮助的人:2435万
展开全部
sinA=(sinB+sinC)/(cosB+cosC)
sin(B+C)=(sinB+sinC)/(cosB+cosC)
sinBcosC+cosBsinC=(sinB+sinC)/(cosB+cosC)
sinBcosBcosC+sinB(cosC)^2+(cosB)^2sinC+cosBsinCcosC=sinB+sinC
sinBcosBcosC+cosBsinCcosC=sinB-sinB(cosC)^2+sinC-(cosB)^2sinC
sinBcosBcosC+cosBsinCcosC=sinB(sinC)^2+(sinB)^2sinC
cosBcosC(sinB+sinC)=sinBsinC(sinB+sinC)
(cosBcosC-sinBsinC)(sinB+sinC)=0
cos(B+C)(sinB+sinC)=0
sinB+sinC≠0
所以cos(B+C)=0
B+C=90度,直角三角形

【1】
由正弦定理可得:
a/sinA=b/sinB=c/sinC=2R
∴sinA=a/2R, sinB=b/2R sinC=c/2R
把这些结果代入条件等式,整理可得:
a=(b+c)/(cosB+cosC)
b+c=a(cosB+cosC)
∴2bc(b+c)=b(2accosB)+c(2abcosC)
【2】
由余弦定理可得:
cosB=(a²+c²-b²)/(2ac). cosC=(a²+b²-c²)/(2ab)
∴2accosB=(a²+c²-b²) 2abcosC=(a²+b²-c²)
∴把这些结果代入上式,可得:
2bc(b+c)=b(a²+c²-b²)+c(a²+b²-c²)
2bc(b+c)=(b+c)a²+bc(b+c)-(b+c)(b²-bc+c²)
2bc=a²+bc-b²+bc-c²
b²+c²=a²
∴该三角形为直角三角形。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式