已知数列{an},{bn},满足a1=2,2an=1+an?an+1,bn=an-1(bn≠0).(Ⅰ)求证数列{1bn}是等差数列,并求
已知数列{an},{bn},满足a1=2,2an=1+an?an+1,bn=an-1(bn≠0).(Ⅰ)求证数列{1bn}是等差数列,并求数列{an}的通项公式;(Ⅱ)令...
已知数列{an},{bn},满足a1=2,2an=1+an?an+1,bn=an-1(bn≠0).(Ⅰ)求证数列{1bn}是等差数列,并求数列{an}的通项公式;(Ⅱ)令cn=bnbn+1,求数列{cn}的前n项和Sn.
展开
撒渔绮27
2014-11-24
·
超过71用户采纳过TA的回答
关注
(Ⅰ)∵b
n=a
n-1∴a
n=b
n+1,
又∵2a
n=1+a
n?a
n+1,
∴2(b
n+1)=1+(b
n+1)(b
n+1+1),
化简得:b
n-b
n+1=b
nb
n+1,
∵b
n≠0,∴
-
=1(n∈N
*),
又
=
=
=1,
∴数列{
}是首项为1,公差为1的等差数列,
∴
=1+(n-1)×1=n,∴b
n=
,
∴a
n=
+1=
;
(Ⅱ)由题意得c
n=b
nb
n+1=
=
-
,
∴S
n=c
1+c
2+…+c
n=1-
+
-
+…+
-
=1-
=
.
收起
为你推荐: