已知f(x)是定义在R上的函数,对于任意x1、x2∈R,f(x1+x2)=f(x1)+f(x2)-1恒成立,且当x>0时,f
已知f(x)是定义在R上的函数,对于任意x1、x2∈R,f(x1+x2)=f(x1)+f(x2)-1恒成立,且当x>0时,f(x)>1,若f(2013)=2014,且f(...
已知f(x)是定义在R上的函数,对于任意x1、x2∈R,f(x1+x2)=f(x1)+f(x2)-1恒成立,且当x>0时,f(x)>1,若f(2013)=2014,且f(x2-ax-3)<3对任意x∈(-1,1)恒成立,则实数a的取值范围为______.
展开
展开全部
任意冲歼取x1、x2∈R,且x1<x2,
则f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1,
∵x>0时,f(x)>1,且盯判告x2-x1>0,
∴f(x2-x1)-1>1-1=0,
∴f(x2)-f(x1)>0,即f(x2)>f(x1),
∴f(x)是定义在R上的增函数,
由f(x1+x2)=f(x1)+f(x2)-1,得
f(2013)=f(2012)+f(1)-1
=f(2011)+2f(1)-2
=f(2010)+3f(1)-3
=…凯明
=2013f(1)-2012,则2013f(1)-2012=2014,
∴f(1)=2,
∴3=f(1)+f(1)-1=f(2),
∴f(x2-ax-3)<3对任意x∈(-1,1)恒成立,即f(x2-ax-3)<f(2)对任意x∈(-1,1)恒成立,
又f(x)在R上递增,
∴x2-ax-3<2对任意x∈(-1,1)恒成立,即x2-ax-5<0对任意x∈(-1,1)恒成立,
则有
,即
,解得-4≤a≤4,
故答案为:[-4,4].
则f(x2)-f(x1)=f[(x2-x1)+x1]-f(x1)=f(x2-x1)+f(x1)-1-f(x1)=f(x2-x1)-1,
∵x>0时,f(x)>1,且盯判告x2-x1>0,
∴f(x2-x1)-1>1-1=0,
∴f(x2)-f(x1)>0,即f(x2)>f(x1),
∴f(x)是定义在R上的增函数,
由f(x1+x2)=f(x1)+f(x2)-1,得
f(2013)=f(2012)+f(1)-1
=f(2011)+2f(1)-2
=f(2010)+3f(1)-3
=…凯明
=2013f(1)-2012,则2013f(1)-2012=2014,
∴f(1)=2,
∴3=f(1)+f(1)-1=f(2),
∴f(x2-ax-3)<3对任意x∈(-1,1)恒成立,即f(x2-ax-3)<f(2)对任意x∈(-1,1)恒成立,
又f(x)在R上递增,
∴x2-ax-3<2对任意x∈(-1,1)恒成立,即x2-ax-5<0对任意x∈(-1,1)恒成立,
则有
|
|
故答案为:[-4,4].
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询