展开全部
解:∵微分方程为dy/dx=y²-3y+2,化为
dy/(y²-3y+2)=dx
∴有dy/[(y-2)(y-1)]=dx,
[1/(y-2)-1/(y-1)]dy=dx,两边同时
积分有ln|y-2|-ln|y-1|+ln|c|=x
(c为任意非零常数),方程的通解
为c(y-2)/(y-1)=e^x,化为
cy-2c=(y-1)e^x
dy/(y²-3y+2)=dx
∴有dy/[(y-2)(y-1)]=dx,
[1/(y-2)-1/(y-1)]dy=dx,两边同时
积分有ln|y-2|-ln|y-1|+ln|c|=x
(c为任意非零常数),方程的通解
为c(y-2)/(y-1)=e^x,化为
cy-2c=(y-1)e^x
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
dy/dx =y^2 -3y +2
∫dy/(y^2 -3y +2) = ∫dx
∫dy/[(y-1)(y-2)] = ∫dx
∫[1/(y-2) -1/(y-1)] dy = ∫dx
ln|(y-2)/(y-1)| = x+C'
(y-2)/(y-1) =C.e^x
y-2 = (y-1)C.e^x
y.(Ce^x-1) =C.e^x -2
y =(C.e^x -2)/(Ce^x-1)
=1 - 1/(Ce^x-1)
∫dy/(y^2 -3y +2) = ∫dx
∫dy/[(y-1)(y-2)] = ∫dx
∫[1/(y-2) -1/(y-1)] dy = ∫dx
ln|(y-2)/(y-1)| = x+C'
(y-2)/(y-1) =C.e^x
y-2 = (y-1)C.e^x
y.(Ce^x-1) =C.e^x -2
y =(C.e^x -2)/(Ce^x-1)
=1 - 1/(Ce^x-1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询