已知a与b的最大公约数是14,a与c的最小公倍数是350,b与c的最小公倍数也是350.满足上述条件的正整数a、b

已知a与b的最大公约数是14,a与c的最小公倍数是350,b与c的最小公倍数也是350.满足上述条件的正整数a、b、c共有多少组?... 已知a与b的最大公约数是14,a与c的最小公倍数是350,b与c的最小公倍数也是350.满足上述条件的正整数a、b、c共有多少组? 展开
 我来答
肥沙次沾003
2014-10-01 · 超过63用户采纳过TA的回答
知道小有建树答主
回答量:122
采纳率:66%
帮助的人:62.4万
展开全部
根据题意,可得14能整除a,a能整除350,14能整除b,b能整除350,
因为14=2×7,350=2×7×52
所以a=14或a=14×5=70或a=14×25=350;
(1)当a=14时,b=14或b=14×5=70或b=14×25=350,
因为a与b的最大公约数是14,
(2)所以当a=70,350时,b都只能取14,
则满足条件的a、b共有5组:
a=14,b=14; a=14,b=70;a=14,b=350;a=70,b=14; a=350,b=14;
对于a、b的每组值,c均有4个不同的值:
25,50,175,350.
所以满足条件的正整数a、b、c共有:5×4=20(组)
答:满足上述条件的正整数a,b,c共有20组.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式