把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠

把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=... 把两块全等的直角三角形ABC和DEF叠放在一起,使三角板DEF的锐角顶点D与三角板ABC的斜边中点O重合,其中∠ABC=∠DEF=90°,∠C=∠F=45°,AB=DE=4,把三角板ABC固定不动,让三角板DEF绕点O旋转,设射线DE与射线AB相交于点P,射线DF与线段BC相交于点Q.(1)如图1,当射线DF经过点B,即点Q与点B重合时,易证△APD∽△CDQ.此时,AP?CQ=______;(2)将三角板DEF由图1所示的位置绕点O沿逆时针方向旋转,设旋转角为α.其中0°<α<90°,问AP?CQ的值是否改变?说明你的理由;(3)在(2)的条件下,设CQ=x,两块三角板重叠面积为y,求y与x的函数关系式.(图2,图3供解题用) 展开
 我来答
留采0iq
推荐于2019-09-05 · TA获得超过112个赞
知道答主
回答量:158
采纳率:78%
帮助的人:63.4万
展开全部
解答:解:(1)∵∠A=∠C=45°,∠APD=∠QDC=90°,
∴△APD∽△CDQ.
∴AP:CD=AD:CQ.
∴即AP×CQ=AD×CD,
∵AB=BC=4,
∴斜边中点为O,
∴AP=PD=2,
∴AP×CQ=2×4=8;
故答案为:8.

(2)AP?CQ的值不会改变.
理由如下:
∵在△APD与△CDQ中,∠A=∠C=45°,
∠APD=180°-45°-(45°+α)=90°-α,
∠CDQ=90°-α,
∴∠APD=∠CDQ.
∴△APD∽△CDQ.
AP
AD
CD
CQ

∴AP?CQ=AD?CD=AD2=(
1
2
AC)2=8.

(3)情形1:当0°<α<45°时,2<CQ<4,即2<x<4,
此时两三角板重叠部分为四边形DPBQ,过D作DG⊥AP于G,DN⊥BC于N,
∴DG=DN=2
由(2)知:AP?CQ=8得AP=
8
x

于是y=
1
2
AB?BC-
1
2
CQ?DN-
1
2
AP?DG
=8-x-
8
x
(2<x<4)
情形2:当45°≤α<90°时,0<CQ≤2时,即0<x≤2,此时两三角板重叠部分为△DMQ,
由于AP=
8
x
,PB=
8
x
-4,易证:△PBM∽△DNM,
BM
MN
PB
DN
BM
2?BM
PB
2
解得BM=
2PB
2+PB
8?4x
4?x

∴MQ=4-BM-CQ=4-x-
8?4x
4?x

于是y=
1
2
MQ?DN=4-x-
8?4x
4?x
(0<x≤2).
综上所述,当2<x<4时,y=8-x-
8
x

当0<x≤2时,y=4-x-
8?4x
4?x
(或y=
x2?4x+8
4?x
).
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式