已知集合A={x|x2-6x+8<0},B={x|(x-a)(x-3a)<0}.(1)若A?B,求实数a的取值范围;(2)若A∩B=?,
已知集合A={x|x2-6x+8<0},B={x|(x-a)(x-3a)<0}.(1)若A?B,求实数a的取值范围;(2)若A∩B=?,求实数a的取值范围....
已知集合A={x|x2-6x+8<0},B={x|(x-a)(x-3a)<0}.(1)若A?B,求实数a的取值范围;(2)若A∩B=?,求实数a的取值范围.
展开
展开全部
由集合A中的不等式x2-6x+8<0,解得:2<x<4,
即A={x|2<x<4},
(1)当a>0时,B={x|a<x<3a},
由A?B,得到
,解得:
≤a≤2;
当a<0时,B={x|3a<x<a},由A?B,得到
,无解,
当a=0时,B=?,不合题意,
∴A?B时,实数a的取值范围为
≤a≤2,且a≠0;
(2)要满足A∩B=?,
分三种情况考虑:
当a>0时,B={x|a<x<3a},由A∩B=?,得到a≥4或3a≤2,解得:0<a≤
或a≥4;
当a<0时,B={x|3a<x<a},由A∩B=?,得到3a≥4或a≤2,解得:a<0;
当a=0时,B=?,满足A∩B=?,
综上所述,a≤
或a≥4.
即A={x|2<x<4},
(1)当a>0时,B={x|a<x<3a},
由A?B,得到
|
4 |
3 |
当a<0时,B={x|3a<x<a},由A?B,得到
|
当a=0时,B=?,不合题意,
∴A?B时,实数a的取值范围为
4 |
3 |
(2)要满足A∩B=?,
分三种情况考虑:
当a>0时,B={x|a<x<3a},由A∩B=?,得到a≥4或3a≤2,解得:0<a≤
2 |
3 |
当a<0时,B={x|3a<x<a},由A∩B=?,得到3a≥4或a≤2,解得:a<0;
当a=0时,B=?,满足A∩B=?,
综上所述,a≤
2 |
3 |
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询