一个n阶矩阵一定有n个特征值(包括重根),且每个特征值至少有一个特征向量对吗?

 我来答
教育小百科达人
推荐于2019-11-02 · TA获得超过156万个赞
知道大有可为答主
回答量:8828
采纳率:99%
帮助的人:479万
展开全部

不对。

一个n阶矩阵一定有n个特征值(包括重根),也可能是复根。一个n阶实对称矩阵一定有n个实特征值(包括重根)。

每一个特征值至少有一个特征向量(不止一个)。不同特征值对应特征向量线性无关。

n×n的方块矩阵A的一个特征值和对应特征向量是满足  的标量以及非零向量  。其中v为特征向量,  为特征值。

A的所有特征值的全体,叫做A的谱 ,记为  。矩阵的特征值和特征向量可以揭示线性变换的深层特性。

扩展资料:

设A是数域P上的一个n阶矩阵,λ是一个未知量,

称为A的特征多项式,记¦(λ)=|λE-A|,是一个P上的关于λ的n次多项式,E是单位矩阵。

¦(λ)=|λE-A|=λ+a1λ+…+an= 0是一个n次代数方程,称为A的特征方程。特征方程¦(λ)=|λE-A|=0的根(如:λ0)称为A的特征根(或特征值)。n次代数方程在复数域内有且仅有n个根,而在实数域内不一定有根,因此特征根的多少和有无,不仅与A有关,与数域P也有关。

性质1:若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量。

性质2:若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。

性质3:设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量( i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关。

Sievers分析仪
2025-01-06 广告
是的。传统上,对于符合要求的内毒素检测,最终用户必须从标准内毒素库存瓶中构建至少一式两份三点标准曲线;必须有重复的阴性控制;每个样品和PPC必须一式两份。有了Sievers Eclipse内毒素检测仪,这些步骤可以通过使用预嵌入的内毒素标准... 点击进入详情页
本回答由Sievers分析仪提供
帐号已注销
推荐于2019-10-31 · TA获得超过33.9万个赞
知道小有建树答主
回答量:403
采纳率:0%
帮助的人:15.7万
展开全部

不对。

一个n阶矩阵一定有n个特征值(包括重根),也可能是复根。

一个n阶实对称矩阵一定有n个实特征值(包括重根)。

每一个特征值至少有一个特征向量(不止一个)。不同特征值对应特征向量线性无关。

n×n的方块矩阵A的一个特征值和对应特征向量是满足  的标量以及非零向量  。其中v为特征向量,  为特征值。

A的所有特征值的全体,叫做A的谱 ,记为  。矩阵的特征值和特征向量可以揭示线性变换的深层特性。

扩展资料:

以A的特征值λ0代入(λE-A)X=θ,得方程组(λ0E-A)X=θ,是一个齐次方程组,称为A的关于λ0的特征方程组。因为|λ0E-A|=0,(λ0E-A)X=θ必存在非零解  ,  称为A的属于λ0的特征向量。所有λ0的特征向量全体构成了λ0的特征向量空间。

若λ是可逆阵A的一个特征根,x为对应的特征向量,则1/λ 是A的逆的一个特征根,x仍为对应的特征向量。

若 λ是方阵A的一个特征根,x为对应的特征向量,则λ 的m次方是A的m次方的一个特征根,x仍为对应的特征向量。

设λ1,λ2,…,λm是方阵A的互不相同的特征值。xj是属于λi的特征向量( i=1,2,…,m),则x1,x2,…,xm线性无关,即不相同特征值的特征向量线性无关。

若是的属于的特征向量,则也是对应于的特征向量,因而特征向量不能由特征值惟一确定。反之,不同特征值对应的特征向量不会相等,亦即一个特征向量只能属于一个特征值。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
Dilraba学长
高粉答主

2019-06-01 · 听从你心 爱你所爱 无问西东
Dilraba学长
采纳数:1107 获赞数:411060

向TA提问 私信TA
展开全部

不对。

一个n阶矩阵一定有n个特征值(包括重根),也可能是复根。

一个n阶实对称矩阵一定有n个实特征值(包括重根)。

每一个特征值至少有一个特征向量(不止一个)。不同特征值对应特征向量线性无关。

特征值是线性代数中的一个重要概念。在数学、物理学、化学、计算机等领域有着广泛的应用。设 A 是n阶方阵,如果存在数m和非零n维列向量 x,使得 Ax=mx 成立,则称 m 是A的一个特征值(characteristic value)或本征值(eigenvalue)。非零n维列向量x称为矩阵A的属于(对应于)特征值m的特征向量或本征向量,简称A的特征向量或A的本征向量。

扩展资料

判断相似矩阵的必要条件

设有n阶矩阵A和B,若A和B相似(A∽B),则有:

1、A的特征值与B的特征值相同——λ(A)=λ(B),特别地,λ(A)=λ(Λ),Λ为A的对角矩阵

2、A的特征多项式与B的特征多项式相同——|λE-A|=|λE-B|。

求矩阵的全部特征值和特征向量的方法如下:

第一步:计算的特征多项式;

第二步:求出特征方程的全部根,即为的全部特征值;

第三步:对于的每一个特征值,求出齐次线性方程组。

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ZHENG能量
推荐于2017-09-09 · TA获得超过182个赞
知道小有建树答主
回答量:168
采纳率:0%
帮助的人:170万
展开全部
一个n阶矩阵一定有n个特征值(包括重根),也可能是复根。
一个n阶实对称矩阵一定有n个实特征值(包括重根)。
每一个特征值至少有一个特征向量(不止一个)。不同特征值对应特征向量线性无关。
本回答被提问者和网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
帐号已注销
2020-04-30
知道答主
回答量:1
采纳率:0%
帮助的人:628
展开全部
你说的明明就是对的,不过要在复数域上才行
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(4)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式