高一数学问题求解
1个回答
展开全部
证明:设,X2>X1>0,
F(X2)-F(X1)=2^X2/(4^X2+1)-2^X1/(4^X1+1)
=[(4^X+1)*2^X2-(4^X2+1)*2^X1]/[(4^X2+1)*(4^X1+1)]
=(4^X1*2^X2-4^X2*2^X1+2^X2-2^X1)/数带山[(4^X2+1)*(4^X1+1)]
=(2^2X1*2^X2-2^2X2*2^X1+2^X2-2^X1)/[(4^X2+1)*(4^X1+1)]
=[2^X1*2^X2(2^X1-2^X2)-(2^X1-2^X2)]/[(4^X2+1)*(4^X1+1)]
=[(2^X1-2^X2)*(2^X1*2^X2-1)/[(4^X2+1)*(4^X1+1)]
因为X属于(0,1),X2>X1>行余0,
∴4^X>0,2^X>0,(4^X2+1)>0,(4^X1+1)>0.
2^X2>2^X1>0,2^X2-2^X1>薯中0,
2^X2>2^X1>1>0,不等式各项同时乘2^X1,得
2^X2*2^X1>2^X1*2^X1>1,∴2^X1*2^X1-1>0,
由上式可得,
(2^X1-2^X2)<0,(2^X1*2^X2-1)>0.
∴F(X2)-F(X1)<0,F(X2)<F(X1),
∴在X2>X1时,F(X2)<F(X1),
F(x)=(2^x)/(4^x+1),f(x)在(0,1)上单调递减.
F(X2)-F(X1)=2^X2/(4^X2+1)-2^X1/(4^X1+1)
=[(4^X+1)*2^X2-(4^X2+1)*2^X1]/[(4^X2+1)*(4^X1+1)]
=(4^X1*2^X2-4^X2*2^X1+2^X2-2^X1)/数带山[(4^X2+1)*(4^X1+1)]
=(2^2X1*2^X2-2^2X2*2^X1+2^X2-2^X1)/[(4^X2+1)*(4^X1+1)]
=[2^X1*2^X2(2^X1-2^X2)-(2^X1-2^X2)]/[(4^X2+1)*(4^X1+1)]
=[(2^X1-2^X2)*(2^X1*2^X2-1)/[(4^X2+1)*(4^X1+1)]
因为X属于(0,1),X2>X1>行余0,
∴4^X>0,2^X>0,(4^X2+1)>0,(4^X1+1)>0.
2^X2>2^X1>0,2^X2-2^X1>薯中0,
2^X2>2^X1>1>0,不等式各项同时乘2^X1,得
2^X2*2^X1>2^X1*2^X1>1,∴2^X1*2^X1-1>0,
由上式可得,
(2^X1-2^X2)<0,(2^X1*2^X2-1)>0.
∴F(X2)-F(X1)<0,F(X2)<F(X1),
∴在X2>X1时,F(X2)<F(X1),
F(x)=(2^x)/(4^x+1),f(x)在(0,1)上单调递减.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询