高中数学的放缩法资料
1个回答
展开全部
原理:欲证n元不等式:f(x1,x2,x3,...xn)>=0.....*
如果有f(x1,x2,x3,...xn)>=f1(x1,x2,x3,...xn)
f1(x1,x2,x3,...xn)>=f2(x1,x2,x3,...xn)
...
fk(x1,x2,x3,...xn)>=0
那么*成立 而且,这些不等式都比*容易证明
这就是放缩法,利用了不等式的传递性,很简单:a>=b,b>=c
=>a>=c
所以。当一个不等式看起来很不好证明,那么就可以“分解”成几步来证明
弊端:容易造成:放缩过度
比如要证a>=c
那么先证了:a>=b
但是若b>=c不恒成立,更有甚者会出现b<=c恒成立的情况。。
那么就失败了。。
所以,要练好放缩法有两点:
(1)把一边放缩成熟悉的结构,比如把不对称放缩成对称,把不齐次放缩成齐次,把不能裂项求和的放缩成可以裂项求和的。。。
(2)不要放缩过度(这就要经验)
就这么多,说来容易操作难。。。还是自己多见题好好领悟吧
如果有f(x1,x2,x3,...xn)>=f1(x1,x2,x3,...xn)
f1(x1,x2,x3,...xn)>=f2(x1,x2,x3,...xn)
...
fk(x1,x2,x3,...xn)>=0
那么*成立 而且,这些不等式都比*容易证明
这就是放缩法,利用了不等式的传递性,很简单:a>=b,b>=c
=>a>=c
所以。当一个不等式看起来很不好证明,那么就可以“分解”成几步来证明
弊端:容易造成:放缩过度
比如要证a>=c
那么先证了:a>=b
但是若b>=c不恒成立,更有甚者会出现b<=c恒成立的情况。。
那么就失败了。。
所以,要练好放缩法有两点:
(1)把一边放缩成熟悉的结构,比如把不对称放缩成对称,把不齐次放缩成齐次,把不能裂项求和的放缩成可以裂项求和的。。。
(2)不要放缩过度(这就要经验)
就这么多,说来容易操作难。。。还是自己多见题好好领悟吧
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询