设函数f(x)=ax2+bx+c(a,b,c∈R且a≠0)同时满足下列条件:①f(1)=1;②当x∈R时,恒有f(x)≥x成

设函数f(x)=ax2+bx+c(a,b,c∈R且a≠0)同时满足下列条件:①f(1)=1;②当x∈R时,恒有f(x)≥x成立;③当x∈R时,恒有f(x-4)=f(2-x... 设函数f(x)=ax2+bx+c(a,b,c∈R且a≠0)同时满足下列条件:①f(1)=1;②当x∈R时,恒有f(x)≥x成立;③当x∈R时,恒有f(x-4)=f(2-x)成立.(1)求f(x)的表达式;(2)设g(x)=4f(x)-4x+2,试问g(x)是否存在这样的区间[a,b](a<b)同时满足下列条件:①g(x)在[a,b]上单调;②若g(x)的定义域是[a,b],则其值域也是[a,b].若存在,求出这样的区间[a,b],若不存在,试说明理由. 展开
 我来答
斤斤HIrq7
2014-12-28 · 超过54用户采纳过TA的回答
知道答主
回答量:116
采纳率:0%
帮助的人:106万
展开全部
(1)因当x∈R时,恒有f(x)≥x成立,
即ax2+(b-1)x+c≥0,∴△=(b-1)2-4ac≤0,且a>0,①
当x∈R时,恒有f(x-4)=f(2-x)成立,则函数f(x)=ax2+bx+c和图象的对称轴是x=-1,
即-
b
2a
=-1,∴b=2a,②
又f(1)=1,∴a+b+c=1,③
由①②③解得:a=
1
4
,b=
1
2
,c=
1
4

∴f(x)的表达式为f(x)=
1
4
x2+
1
2
x+
1
4

(2)g(x)=4f(x)-4x+2=x2-2x+3,
假设存在这样的区间[a,b](a<b)同时满足下列条件:①g(x)在[a,b]上单调;②若g(x)的定义域是[a,b],则其值域也是[a,b].
∵g(x)在[a,b]上单调,∴a≥1或b≤1.
当a≥1时,g(x)在[a,b]上单调增,若g(x)的定义域是[a,b],则值域为[a2-2a+3,b2-2b+3],
a2?2a+3=a
b2?2b+3=b
,此方程组无解;
当b≤1时,g(x)在[a,b]上单调减,若g(x)的定义域是[a,b],则值域为[b2-2b+3,a2-2a+3],
a2?2a+3=b
b2?2b+3=a
,此方程组无解;
综上可知,不存在这样的区间[a,b](a<b)同时满足条件.
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式