整式的乘除法练习题

快考式了请各位有学问的叔叔阿姨们帮我出几道初二整式的成除法练习题,谢谢!谢谢!... 快考式了请各位有学问的叔叔阿姨们帮我出几道初二整式的成除法练习题,谢谢!谢谢! 展开
APE小草莓
2012-06-07 · TA获得超过4283个赞
知道答主
回答量:43
采纳率:0%
帮助的人:24.9万
展开全部
《整式的乘除与因式分解》技巧性习题训练
一、逆用幂的运算性质
1. .
2.( )2002×(1.5)2003÷(-1)2004=________。
3.若,则 .
4.已知:,求、的值。
5.已知:,,则=________。

二、式子变形求值
1.若,,则 .
2.已知,,求的值.
3.已知,求的值。
4.已知:,则= .
5.的结果为 .
6.如果(2a+2b+1)(2a+2b-1)=63,那么a+b的值为_______________。
7.已知:,,,
求的值。
8.若则
9.已知,求的值。
10.已知,则代数式的值是_______________。
11.已知:,则_________,_________。

三、式子变形判断三角形的形状
1.已知:、、是三角形的三边,且满足,则该三角形的形状是_________________________.
2.若三角形的三边长分别为、、,满足,则这个三角形是___________________。
3.已知、、是△ABC的三边,且满足关系式,试判断△ABC的形状。
四、分组分解因式
1.分解因式:a2-1+b2-2ab=_______________。
2.分解因式:_______________。
五、其他
1.已知:m2=n+2,n2=m+2(m≠n),求:m3-2mn+n3的值。
2.计算:

七年级整式复习
a.单项式和多项式统称为整式。
b代数式中的一种有理式.不含除法运算或分数,以及虽有除法运算及分数,但除式或分母中不含变数者,则称为整式。 (含有字母有除法运算的,那么式子 叫做分式fraction.)
c整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。
d加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂。
整式和同类项
1.单项式
(1)单项式的表示形式:1、数与字母的乘积这样的代数式叫做单项式2、单个字母也是单项式。
3、单个的数是单项式4、字母与字母相乘成为单项式5、数与数相乘称为单项式
(2)单项式的系数:单项式中的 数字因数及性质符号叫做单项式的系数。
如果一个单项式,只含有数字因数,是正数的单项式系数为1,是负数的单项式系数为—1。
(3)单项式的次数:一个单项式中,所有字母的指数的和叫做这个单项式的次数。
2.多项式
(1)多项式的概念:几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项,其中不含字母的项叫做常数项。一个多项式有几项就叫做几项式。多项式中的符号,看作各项的性质符号。一元N次多项式最多N+1项
(2)多项式的次数:多项式中,次数最高的项的次数,就是这个多项式的次数。
(3)多项式的排列:
1.把一个多项式按某一个字母的指数从大到小的顺序排列起来,叫做把多项式按这个字母降幂排列。 2.把一个多项式按某一个字母的指数从小到大的顺序排列起来,叫做把多项式按这个字母升幂排列。
由于多项式是几个单项式的和,所以可以用加法的运算定律,来交换各项的位置,而保持原多项式的值不变。
为了便于多项式的计算,通常总是把一个多项式,按照一定的顺序,整理成整洁简单的形式,这就是多项式的排列。
在做多项式的排列的题时注意:
(1)由于单项式的项,包括它前面的性质符号,因此在排列时,仍需把每一项的性质符号看作是这一项的一部分,一起移动。
(2)有两个或两个以上字母的多项式,排列时,要注意:
a.先确认按照哪个字母的指数来排列。
b.确定按这个字母向里排列,还是向外排列。
(3)整式: 单项式和多项式统称为整式。
(4)同类项的概念:
所含字母相同,并且相同字母的次数也相同的项叫做同类项,几个常数项也叫同类项。
掌握同类项的概念时注意:
1.判断几个单项式或项,是否是同类项,就要掌握两个条件:
①所含字母相同。
②相同字母的次数也相同。
2.同类项与系数无关,与字母排列的顺序也无关。
3.几个常数项也是同类项。
(5)合并同类项:
1.合并同类项的概念:
把多项式中的同类项合并成一项叫做合并同类项。
2.合并同类项的法则:
同类项的系数相加,所得结果作为系数,字母和字母的指数不变。
3.合并同类项步骤:
⑴.准确的找出同类项。
⑵.逆用分配律,把同类项的系数加在一起(用小括号),字母和字母的指数不变。
⑶.写出合并后的结果。
在掌握合并同类项时注意:
1.如果两个同类项的系数互为相反数,合并同类项后,结果为0.
2.不要漏掉不能合并的项。
3.只要不再有同类项,就是结果(可能是单项式,也可能是多项式)。
合并同类项的关键:正确判断同类项。
整式和整式的乘法
整式可以分为定义和运算,定义又可以分为单项式和多项式,运算又可以分为加减和乘除。
加减包括合并同类项,乘除包括基本运算、法则和公式,基本运算又可以分为幂的运算性质,法则可以分为整式、除法,公式可以分为乘法公式、零指数幂和负整数指数幂。
同底数幂的乘法法则:同底数幂相乘,底数不变指数相加。
幂的乘方法则:幂的乘方,底数不变,指数相乘。
积的乘方法则:积的乘方等于把积的每一个因式分别乘方,再把所得的幂相乘。
单项式与单项式相乘有以下法则:单项式与单项式相乘,把它们的系数、同底数幂分别相乘,其余字母连同它的指数不变,作为积的因式。
单项式与多项式相乘有以下法则:单项式与多项式相乘,就是用单项式去乘多项式的每一项,再把所得的积相加。
多项式与多项式相乘有下面的法则:多项式与多项式相乘,先用一个多项式的每一项乘另一个多项式的每一项,再把所得的积相加。
平方差公式:两数和与这两数差的积等于这两数的平方差。
完全平方公式:两数和的平方,等于这两数的平方和,加上这两数积的2倍。 两数差的平方,等于这两数的平方和,减去这两积的2倍。
同底数幂相除,底数不变,指数相减。

期末整式复习题
一、选择题。
计算 (-3)2n+1+3•(-3)2n结果正确的是( )
A. 32n+2 B. -32n+2 C. 0 D. 1
2. 有以下5个命题:①3a2+5a2=8a2②m2•m2=2m2 ③x3•x4=x12 ④(-3)4•(-3)2=-36 ⑤(x-y)2•(y-x)3=(y-x)5 中,正确命题个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
3. 适合2x(x-1)-x(2x-5)=12的x值是( )
A. x=1 B. x=2 C. x=4 D. x=0
4. 设(5a+3b)2=(5a-3b)2+M,则M的值是( )
A. 30ab B. 60ab C. 15ab D. 12ab
5. 已知xa=3 xb=5 则x3a+2b的值为( )
A. 27 B. 675 C. 52 D. 90
6. -an与(-a)n的关系是( )
A. 相等
B. 互为相反数
C. 当n为奇数时,它们相等; 当n为偶数时,它们互为相反数
D. 当n为奇数时,它们互为相反数; 当n为偶数时,它们相等
7.下列计算正确的是( )
A .(-4x)(2x2+3x-1)=-8x3-12x2-4x B. (x+y)(x2+y2)= x3+ y3
C. (-4a-1)(4a-1)=1-16a2 D. (x-2y)2=x2-2xy+4y2
8. 下列从左到右的变形中,属于因式分解的是( )
A.( x+1)( x-1)=- x2-1 B. x2-2x+1= x(x-2)+1
C. a2-b2=(a+b)(a-b) D. mx+my+nx+ny=(x+y)m+n(x+y)
9.若x2+mx-15=(x+3)(x+n),则m的值为( )
A. -5 B. 5 C. -2 D. 2
10. 4(a-b)2-4(b-a)+1分解因式的结果是( )
A.(2a-2b+1)2 B. (2a+2b+1)2
C. (2a-2b-1)2 D. (2a-2b+1) (2a-2b-1)
填空题。
11.计算3xy2·(-2xy)=
12.多项式6x2y-2xy3+4xyz的公因式是
13.多项式(mx+8)(2-3x)展开后不含x项, 则m=
14.设4x2+mx+121是一个完全平方式,则m=
15.已知a+b=7,ab=12,则a2+b2=
三. 解答题( 共55分 )
16. 计算 (a2)4a-(a3)2a3

17. 计算(5a3b)·(-4abc) ·(-5ab)

18. 已知22n+1+4n=48, 求n的值.

19. 先化简,再求值 (x+3)(x-4)-x(x-2) ,其中x=11

20. 利用乘法公式计算
(1) 1.02×0.98 (2) 992

21. 因式分解 4x-16x3

22. 因式分解 4a(b-a)-b2

23. 已知(x+my)(x+ny)=x2+2xy-6y2,求 -(m+n)•mn的值.

24. 已知a+b=3, ab= -12,求下列各式的值.
(1) a2+b2 (2) a2-ab+b2

附加题。
1. 你能说明为什么对于任意自然数n,代数式n(n+7)-(n-3)(n-2)的值都能被6整除吗?

2. 已知a,b,c 是△ABC的三边的长,且满足:
a2+2b2+c2-2b(a+c)=0,试判断此三角形的形状.

期末整式复习题答案

一. 选择题( 共10题 每小题3分 共30分)
1. C , 2. B 3. C 4. B 5. B 6. C 7. C 8. C 9.C 10. A
二.填空题( 每题3分 共15分 )
11. -6x2y3 12. 2xy(3x-y2+2z) 13. 12 14. 44 15. 25
三. 解答题( 共55分 )
16. 解: 原式=a8a-a6a3= a9-a9= 0
17. 解: 原式=( -20a4b2c)(-5ab)= 100 a5b3c
18. 解: 22n+1+4n=48 22n·2+ 22n = 48 22n (1+2)=48 22n = 16 22n =24 n=2
19. 解: 原式=x2-4x+3x-12-x2+2x
=x-12
把X=11代入x-12得:
x-12=-1
20. (1)解: 原式=(1+0.02)(1-0.02)=1-0.004=0.9996
(2) 解: 原式=(100-1)2=10000-200+1=9801
21. 解: 原式=4x(1-4 x2)=(1+2x)(1-2x)
22. 解: 原式=4ab-4a2-b2 =-(4a2-4ab+ b2 )=- (2a-b) 2
23. 解: (x+my)(x+ny)=x2+2xy-6y2,
x2+(m+n)xy+mny2= x2+2xy-6y2
即: m+n=2 mn=-6
-( m+n)·mn=(-2) ·(-6)=12

24. (1) 解: a2+b2
= a2+2ab+b2 -2ab
=(a+b) 2- 2ab
把a+b=3, ab= -12代入(a+b) 2- 2ab得:
(a+b) 2- 2ab=9+24=33
(2) 解: a2-ab+b2
= a2-ab+3ab+ b2-3ab
= a2+2ab+b2 -3ab
=(a+b) 2-3ab
把a+b=3, ab= -12代入(a+b) 2- 3ab得:
(a+b) 2- 3ab=9+36=45

附加题(10分 每题5分)
解: n(n+7)-(n-3)(n-2)=n2+7n-(n2-5n+6)
= n2+7n-n2+5n-6=12n-6=6(2n-1)
即: 代数式n(n+7)-(n-3)(n-2)的值都能被6整除
解: a2+2b2+c2-2b(a+c)=0 a2+b2+ b2+c2-2ba-2bc=0
(a-b) 2+(b-c) 2=0 即: a-b=0 , b-c=0 a=b= c
所以△ABC是等边三角形.
帐号已注销
2013-01-12
知道答主
回答量:34
采纳率:0%
帮助的人:21.9万
展开全部
整式的乘法
(-y)·(-y)5·(-y2)
已知x的a次方等于5,x的b次方等于7,求a加b的值
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式