已知tan2θ=-2根号2,2θ∈(π/2,π),则cos2θ/cos²(π/4+θ)
(根号sin^4+cos2x)+(根号cos^4-cos2x)还有一小题能帮忙否根号都是把全部根住...
(根号sin^4+cos2x)+(根号cos^4-cos2x) 还有一小题能帮忙否 根号都是把全部根住
展开
展开全部
由tan2θ=-2根号2,得sin2θ=-2根号2cos2θ,而sin2θ*sin2θ+cos2θ*cos2θ=1,2θ∈(π/2,π),解得
sin2θ=2/3根号2,cos2θ=-1/3
cos2θ/cos²(π/4+θ)
=cos2θ/(cosπ/4*cosθ-sinπ/4*sinθ)²=cos2θ/[1/2(cos²θ-2cosθ*sinθ+sin²θ)]
=-1/3/[1/2(1-2/3根号2)]
=-6-4根号2
sin2θ=2/3根号2,cos2θ=-1/3
cos2θ/cos²(π/4+θ)
=cos2θ/(cosπ/4*cosθ-sinπ/4*sinθ)²=cos2θ/[1/2(cos²θ-2cosθ*sinθ+sin²θ)]
=-1/3/[1/2(1-2/3根号2)]
=-6-4根号2
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
(1)解:由tan2θ=-2√2,得sin2θ=-2√2c
os2
θ,
而sin2θ*sin2θ+cos2θ*cos2θ=1,2θ∈(π/2,π),
故解得
sin2θ=2√2/3,cos2θ=-1/3,
故cos²(π/4+θ)
=[1+cos﹙π/2+2θ﹚]/2
=[1-sin﹙2θ﹚]/2
=[1-2√2/3]/2
=(3-2√2)/6
故cos2θ/cos²(π/4+θ)
=(-1/3)/[(3-2√2)/6]
=(-1/3)*[6/(3-2√2)]
=-2(3+2√2)
=-6-4√2
(2)题目应该是:根号[(sinx)^4
+cos2x]+根号[(cosx)^4-cos2x]
解:√[(sinx)^4
+cos2x]+√[(cosx)^4-cos2x]
=√[(sinx)^4
+1-2sin²x]+√[(cosx)^4-(2cos²x-1)]
=√[(sinx)^4
-2sin²x+1]+√[(cosx)^4-2cos²x+1]
=√[(sin²x-1)²]+√[(cos²x-1)²],
由sin²x≤1,cos²x≤1,故sin²x-1≤0,cos²x-1≤0,
故原式=1-sin²x+1-cos²x
=2-(sin²x+cos²x)
=2-1
=1
os2
θ,
而sin2θ*sin2θ+cos2θ*cos2θ=1,2θ∈(π/2,π),
故解得
sin2θ=2√2/3,cos2θ=-1/3,
故cos²(π/4+θ)
=[1+cos﹙π/2+2θ﹚]/2
=[1-sin﹙2θ﹚]/2
=[1-2√2/3]/2
=(3-2√2)/6
故cos2θ/cos²(π/4+θ)
=(-1/3)/[(3-2√2)/6]
=(-1/3)*[6/(3-2√2)]
=-2(3+2√2)
=-6-4√2
(2)题目应该是:根号[(sinx)^4
+cos2x]+根号[(cosx)^4-cos2x]
解:√[(sinx)^4
+cos2x]+√[(cosx)^4-cos2x]
=√[(sinx)^4
+1-2sin²x]+√[(cosx)^4-(2cos²x-1)]
=√[(sinx)^4
-2sin²x+1]+√[(cosx)^4-2cos²x+1]
=√[(sin²x-1)²]+√[(cos²x-1)²],
由sin²x≤1,cos²x≤1,故sin²x-1≤0,cos²x-1≤0,
故原式=1-sin²x+1-cos²x
=2-(sin²x+cos²x)
=2-1
=1
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询