在四边形ABCD中,AD=CD,∠ABC=75°,∠ADC=60°,AB=2,BC=根号2,
(1)以线段BD,AB,BC作为三角形的三边,1、则这个三角形为_______三角形(填:锐角三角形、直角三角形、钝角三角形)2、求BD边所对的角的度数...
(1)以线段BD,AB,BC作为三角形的三边,
1、则这个三角形为_______三角形(填:锐角三角形、直角三角形、钝角三角形)
2、求BD边所对的角的度数 展开
1、则这个三角形为_______三角形(填:锐角三角形、直角三角形、钝角三角形)
2、求BD边所对的角的度数 展开
展开全部
解:作∠BDE=∠ADC=60度,使DE=DB。连接BE,CE
那么△BDE是正三角形,BE=BD
又∠BDE=∠ADC 则∠CDE=∠ADB
又CD=AD,DE=DB
∴△CDE≌△ADB(边,角,边)
从而CE=AB,∠CED=∠ABD
则△BCE是线段BD,AB,BC作为三边组成的三角形
又∠BCE=∠CED+∠DBC+∠BDE
=∠ABD+∠DBC+60度
=75度+60度=135度
1。
∴以线段BD,AB,BC作为三角形的三边,
1、则这个三角形为钝角三角形。
2。BD边所对的角有∠BCD与∠BAD
其中∠BCD也即BE所对的角,∠BCE
∠BCD=∠BCE=135度
∠BAD=360度-∠ABC-∠ADC-∠BCD
=360度-75度-60度-135度
=360度-270度
=90度
∴BD边所对的角的度数为135度或90度.
那么△BDE是正三角形,BE=BD
又∠BDE=∠ADC 则∠CDE=∠ADB
又CD=AD,DE=DB
∴△CDE≌△ADB(边,角,边)
从而CE=AB,∠CED=∠ABD
则△BCE是线段BD,AB,BC作为三边组成的三角形
又∠BCE=∠CED+∠DBC+∠BDE
=∠ABD+∠DBC+60度
=75度+60度=135度
1。
∴以线段BD,AB,BC作为三角形的三边,
1、则这个三角形为钝角三角形。
2。BD边所对的角有∠BCD与∠BAD
其中∠BCD也即BE所对的角,∠BCE
∠BCD=∠BCE=135度
∠BAD=360度-∠ABC-∠ADC-∠BCD
=360度-75度-60度-135度
=360度-270度
=90度
∴BD边所对的角的度数为135度或90度.
创远信科
2024-07-24 广告
2024-07-24 广告
矢量网络分析 (VNA) 是最重要的射频和微波测量方法之一。 创远信科提供广泛的多功能、高性能网络分析仪(最高40GHz)和标准多端口解决方案。创远信科的矢量网络分析仪非常适用于分析无源及有源器件,比如滤波器、放大器、混频器及多端口模块。 ...
点击进入详情页
本回答由创远信科提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询