请问(-1)^n/(n-lnn)的敛散性是什么?

 我来答
晴晴知识加油站
高能答主

2019-07-30 · 让梦想飞扬,让生命闪光。
晴晴知识加油站
采纳数:3595 获赞数:661270

向TA提问 私信TA
展开全部

结果为:收敛

解题过程如下:

lim(n→∞)1/ln(1+n)/(1/n)

=lim(n→∞) n/ln(1+n)

=lim(n→∞) 1/(1/(n+1))

=lim(n→∞) n+1

=∞

lim(n→∞)1/ln(1+n)=0

且 1/ln(1+n)>1/ln(n+2)

∴交错级数收敛

扩展资料

求收敛级数的方法:

函数级数是形如∑an(x-x0)^n的级数,称之为幂级数。它的结构简单 ,收敛域是一个以为中心的区间(不一定包括端点),并且在一定范围内具有类似多项式的性质,在收敛区间内能进行逐项微分和逐项积分等运算。

例如幂级数∑(2x)^n/x的收敛区间是[-1/2,1/2],幂级数∑[(x-21)^n]/(n^2)的收敛区间是[1,3],而幂级数∑(x^n)/(n!)在实数轴上收敛。

如果每一un≥0(或un≤0),则称∑un为正(或负)项级数,正项级数与负项级数统称为同号级数。正项级数收敛的充要条件是其部分和序列Sm 有上界。

例如∑1/n!收敛,因为:Sm=1+1/2!+1/3!+···+1/m!<1+1+1/2+1/22+···+1/2^(m-1)<3(2^3表示2的3次方)。

如果级数的每一项依赖于变量x,x 在某区间I内变化,即un=un(x),x∈I,则∑un(x)称为函数项级数,简称函数级数。

若x=x0使数项级数∑un(x0)收敛,就称x0为收敛点,由收敛点组成的集合称为收敛域,若对每一x∈I,级数∑un(x)都收敛,就称I为收敛区间。

函数级数在其收敛域内定义了一个函数,称之为和函数S(x),即S(x)=∑un(x)如果满足更强的条件,Sm(x)在收敛域内一致收敛于S(x)。

liuxuqifei
推荐于2016-12-05 · TA获得超过7719个赞
知道小有建树答主
回答量:739
采纳率:87%
帮助的人:277万
展开全部
  级数∑(-1)^n/(n-lnn)是收敛的。
  首先这是一个交错级数,因此根据交错级数性质,只要一般项单调递减,则级数收敛。记f(n)=n-lnn,求导得f`(n)=1-1/n>0,因此f(n)单调递增,则其倒数函数即1/(n-lnn)单调递减,因此原级数收敛。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
慕容兮
2012-06-04 · TA获得超过4509个赞
知道大有可为答主
回答量:2558
采纳率:0%
帮助的人:2890万
展开全部
是收敛的,我们今天上课刚讲了这条。当n趋近于正无穷,n-lnn趋向于正无穷,1/(n-lnn)趋向于0,且Un=1/(n-lnn)是单调减的,你可以用导数求的她是单调减的,综上,该级数收敛。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
茹翊神谕者

2021-05-14 · TA获得超过2.5万个赞
知道大有可为答主
回答量:3.6万
采纳率:76%
帮助的人:1590万
展开全部

该级数条件收敛,详情如图所示

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式