如图1,在△ABC中,AB=BC=5,AC=6,BO⊥AC,垂足为点O.过点A作射线AE∥BC,点P是边BC上任意一点,连接PO
如图1,在△ABC中,AB=BC=5,AC=6,BO⊥AC,垂足为点O.过点A作射线AE∥BC,点P是边BC上任意一点,连接PO并延长与射线AE相交于点Q,设B、P两点间...
如图1,在△ABC中,AB=BC=5,AC=6,BO⊥AC,垂足为点O.过点A作射线AE∥BC,点P是边BC上任意一点,连接PO并延长与射线AE相交于点Q,设B、P两点间的距离为x.(1)如图2,如果四边形ABPQ是平行四边形,求x的值;(2)过点Q作直线BC的垂线,垂足为点R,当x为何值时,△PQR∽△CBO?(3)设△AOQ的面积为y,求y与x的函数关系式,并写出函数的定义域.
展开
1个回答
展开全部
解:(1)∵AB=BC=5,AC=6,BO⊥AC,
∴OA=OC=
AC=3,
∵四边形ABPQ是平行四边形,
∴AQ∥BC,AQ=BP,
∴AQ:CP=OA:OC=1,
∴AQ=CP,
∴BP=CP=
BC=2.5,
∴x=2.5;
(2)当x=0或5时,易得△PQR∽△CBO,
当x≠0或5时,
∵BO⊥AC,QR⊥BC,
∴∠BOC=∠QRP=90°,
当∠C=∠QPR时,△PQR∽△CBO,
∴OP=OC=3,QP:BC=QR:OB,
∵AE∥BC,OB=4,
∴△AOQ∽△COP,
∴OQ:OP=OA:OC=1,
∵QP=6,
∴QR=
=
=
,
过点O作OK⊥BC,垂足为K,
∴
=
=
,
∴OK=
,
∴PK=
,
∴PC=
,
∴BP=
;
∴当x=0、5或
时,△PQR∽△CBO.
(3)∵AE∥BC,
∴∠EAC=∠C,∠AOQ=∠COP,
∵OA=OC,
∴△AOQ≌△COP,
∴S△AOQ=S△COP=y,
∵OK=
,
∴y=S△COP=
=
=6-
x(0≤x<5).
∴OA=OC=
1 |
2 |
∵四边形ABPQ是平行四边形,
∴AQ∥BC,AQ=BP,
∴AQ:CP=OA:OC=1,
∴AQ=CP,
∴BP=CP=
1 |
2 |
∴x=2.5;
(2)当x=0或5时,易得△PQR∽△CBO,
当x≠0或5时,
∵BO⊥AC,QR⊥BC,
∴∠BOC=∠QRP=90°,
当∠C=∠QPR时,△PQR∽△CBO,
∴OP=OC=3,QP:BC=QR:OB,
∵AE∥BC,OB=4,
∴△AOQ∽△COP,
∴OQ:OP=OA:OC=1,
∵QP=6,
∴QR=
QP?OB |
BC |
6×4 |
5 |
24 |
5 |
过点O作OK⊥BC,垂足为K,
∴
OK |
QR |
OP |
QP |
1 |
2 |
∴OK=
12 |
5 |
∴PK=
9 |
5 |
∴PC=
18 |
5 |
∴BP=
7 |
5 |
∴当x=0、5或
7 |
5 |
(3)∵AE∥BC,
∴∠EAC=∠C,∠AOQ=∠COP,
∵OA=OC,
∴△AOQ≌△COP,
∴S△AOQ=S△COP=y,
∵OK=
12 |
5 |
∴y=S△COP=
PC?OK |
2 |
| ||
2 |
6 |
5 |
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询