常数e等于多少?
e在科学技术中用得非常多,学习了高等数学后就会知道,许多结果和它有紧密的联系,以e为底数,许多式子都是最简的,用它是最“自然”的,所以叫“自然对数”,因而在涉及对数运算的计算中一般使用它,是一个数学符号,没有很具体的意义。
e的值是2.718281828……是个无限不循环小数。
e是这样定义的:当n->∞时,(1+1/n)^n的极限。
自然常数的由来
一个最直观的方法是引入一个经济学名称“复利”。复利率法,是一种计算利息的方法。按照这种方法,利息除了会根据本金计算外,新得到的利息同样可以生息,因此俗称“利滚利”、“驴打滚”或“利叠利”。
只要计算利息的周期越密,财富增长越快,而随着年期越长,复利效应亦会越为明显。在引入“复利模型”之前,先试着看看更基本的 “指数增长模型”。大部分细菌是通过二分裂进行繁殖的,假设某种细菌1天会分裂一次,也就是一个增长周期为1天,这意味着:每一天,细菌的总数量都是前一天的两倍。
如果经过x 天(或者说,经过x 个增长周期)的分裂,就相当于翻了x 倍。在第x 天时,细菌总数将是初始数量的2x 倍。如果细菌的初始数量为1,那么x 天后的细菌数量即为2x。
上式含义是:第x 天时,细菌总数量是细菌初始数量的Q 倍。如果将 “分裂”或“翻倍”换一种更文艺的说法,也可以说是:“增长率为100%”。这个公式的数学内涵是:一个增长周期内的增长率为r,在增长了x 个周期之后,总数量将为初始数量的Q 倍。
2020-07-03 广告