二面角的余弦值是多少?
二面角的余弦值是1/3。先求出两个平面的法向量的夹角的余弦值的绝对值,若二面角为锐角则取其正值,若为钝角则取其负值。
连结EC,FD,与AG交于正方体的中点O正方体的边长为1,所以对角线长是根号3所以EO=根号3/2,FO=根号3/2因为EO垂直于AG,FO垂直于AG所以角EOF即为二面角E-AG-F的平面角在三角形EOF中,由余弦定理得cos角EOF=(EO2+FO2-EF2)/2*EO*FO=(3/4+3/4-1)/(2*3/4)=1/3。
作二面角的平面角的常用方法有以下几种:
1、定义法 :在棱上取一点A,然后在两个平面内分别作过棱上A点的垂线。有时也可以在两个平面内分别作棱的垂线,再过其中的一个垂足作另一条垂线的平行线。
2、垂面法 :作与棱垂直的平面,则垂面与二面角两个面的交线所成的角就是二面角的平面角
3、面积射影定理:二面角的余弦值等于某一个半平面在另一个半平面的射影的面积和该平面自己本身的面积的比值。即公式cosθ=S'/S(S'为射影面积,S为斜面面积)。运用这一方法的关键是从中找出斜面多边形和它在有关平面上的射影,而且它们的面积容易求得。
4、三垂线定理及其逆定理法:先找到一个平面的垂线,再过垂足作棱的垂线,连接两个垂足即得二面角的平面角。
5、向量法:分别作出两个半平面的法向量,由向量夹角公式求得。二面角就是该夹角或其补角。
6、转化法:在二面角α-l-β其中一个半平面α上找一点P,求出P到β的距离h和P到l的距离d,那么arcsin(h/d)(二面角为锐角)或π-arcsin(h/d)(二面角为钝角)就是二面角的大小。