
2个回答
2014-11-22 · 知道合伙人教育行家
关注

展开全部
f(x) = {a*2^x + 1} / { 2^x+1}
奇函数
f(-x) = -f(x)
{ a*2^(-x) +1} / {2^(-x)+1 } = - {a*2^x + 1} / { 2^x+1}
左边分子分母同乘以2^x:
{ a +2^x} / {1+2^x } = {-1-a*2^x } / { 1+2^x}
a = -1
f(x) = {-2^x + 1} / { 2^x+1} = {-(2^x+1)+ 2} / { 2^x+1} = -1 + 2/(2^x+1)
2^xd单调增;
2^x+1单调增;
2/(2^x+1)单调减;
-1 + 2/(2^x+1)单调减。
f(x)在(-无穷大,+无穷大)上单调减
奇函数
f(-x) = -f(x)
{ a*2^(-x) +1} / {2^(-x)+1 } = - {a*2^x + 1} / { 2^x+1}
左边分子分母同乘以2^x:
{ a +2^x} / {1+2^x } = {-1-a*2^x } / { 1+2^x}
a = -1
f(x) = {-2^x + 1} / { 2^x+1} = {-(2^x+1)+ 2} / { 2^x+1} = -1 + 2/(2^x+1)
2^xd单调增;
2^x+1单调增;
2/(2^x+1)单调减;
-1 + 2/(2^x+1)单调减。
f(x)在(-无穷大,+无穷大)上单调减
展开全部
解由函数fx=a2^x+1/2^x+1定义域为奇函数,且为奇函数
则f(0)=0
即a×2^0+1=0
解得a=-1
故f(x)=(-2^x+1)/(2^x+1)
由f(x)=(-2^x+1)/(2^x+1)
=(-(2^x+1)+2)/(2^x+1)
=-1+2/(2^x+1)
设x1,x2属于R且x1<x2
则f(x1)-f(x2)
=[-1+2/(2^x1+1)]-[-1+2/(2^x2+1)]
=2/(2^x1+1)-2/(2^x2+1)
=2(2^x2-2^x1)/(2^x2+1)(2^x1+1)
由x1<x2
则2^x1<2^x2
则2^x1-2^x2<0
即2^x2-2^x1>0
即2(2^x2-2^x1)/(2^x2+1)(2^x1+1)>0
故f(x1)-f(x2)>0
故f(x)在R上为减函数
则f(0)=0
即a×2^0+1=0
解得a=-1
故f(x)=(-2^x+1)/(2^x+1)
由f(x)=(-2^x+1)/(2^x+1)
=(-(2^x+1)+2)/(2^x+1)
=-1+2/(2^x+1)
设x1,x2属于R且x1<x2
则f(x1)-f(x2)
=[-1+2/(2^x1+1)]-[-1+2/(2^x2+1)]
=2/(2^x1+1)-2/(2^x2+1)
=2(2^x2-2^x1)/(2^x2+1)(2^x1+1)
由x1<x2
则2^x1<2^x2
则2^x1-2^x2<0
即2^x2-2^x1>0
即2(2^x2-2^x1)/(2^x2+1)(2^x1+1)>0
故f(x1)-f(x2)>0
故f(x)在R上为减函数
本回答被提问者和网友采纳
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询