有没有广东省2008年高考数学卷

理科的,要答案... 理科的,要答案 展开
 我来答
夜夜夜夜1999
2012-06-04
知道答主
回答量:7
采纳率:0%
帮助的人:3.7万
展开全部
2008年普通高等学校招生全国统一考试 (广东卷)
数学(理科)

本试卷共4页,21小题,满分150分.考试用时120分钟.
参考公式:如果事件 互斥,那么 .
已知 是正整数,则 .
一、选择题:本大题共8小题,每小题5分,满分40分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知 ,复数 的实部为 ,虚部为1,则 的取值范围是( )
A. B. C. D.
2.记等差数列 的前 项和为 ,若 , ,则 ( )
A.16 B.24 C.36 D.48

一年级 二年级 三年级
女生 373

男生 377 370

3.某校共有学生2000名,各年级男、女生人数如表1.已知在全校学生中随机抽取1名,抽到二年级女生的概率是0.19.现用分层抽样的方法在全校抽取64名学生,则应在三年级抽取的学生人数为( C )
A.24 B.18 C.16 D.12 表1
4.若变量 满足 则 的最大值是( )
A.90 B.80 C.70 D.40
5.将正三棱柱截去三个角(如图1所示 分别是 三边的中点)得到几何体如图2,则该几何体按图2所示方向的侧视图(或称左视图)为( )

6.已知命题 所有有理数都是实数,命题 正数的对数都是负数,则下列命题中为真命题的是( )
A. B. C. D.
7.设 ,若函数 , 有大于零的极值点,则( )
A. B. C. D.

8.在平行四边形 中, 与 交于点 是线段 的中点, 的延长线与 交于点 .若 , ,则 ( )
A. B. C. D.
二、填空题:本大题共7小题,考生作答6小题,每小题5分,满分30分.
(一)必做题(9~12题)
9.阅读图3的程序框图,若输入 , ,则输出
, .
(注:框图中的赋值符号“ ”也可以写成“ ”或“ ”)
10.已知 ( 是正整数)的展开式中, 的系数小于
120,则 .
11.经过圆 的圆心 ,且与直线 垂直的直线方程是 .
12.已知函数 , ,则 的最小正周期是 .
二、选做题(13—15题,考生只能从中选做两题)
13.(坐标系与参数方程选做题)已知曲线 的极坐标方程分别为 , ,则曲线 与 交点的极坐标为 .
14.(不等式选讲选做题)已知 ,若关于 的方程 有实根,则 的取值范围是 .
15.(几何证明选讲选做题)已知 是圆 的切线,切点为 , . 是圆 的直径, 与圆 交于点 , ,则圆 的半径 .

三、解答题:本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤.
16.(本小题满分13分)
已知函数 , 的最大值是1,其图像经过点 .
(1)求 的解析式;
(2)已知 ,且 , ,求 的值.

17.(本小题满分13分)
随机抽取某厂的某种产品200件,经质检,其中有一等品126件、二等品50件、三等品20件、次品4件.已知生产1件一、二、三等品获得的利润分别为6万元、2万元、1万元,而1件次品亏损2万元.设1件产品的利润(单位:万元)为 .
(1)求 的分布列;
(2)求1件产品的平均利润(即 的数学期望);
(3)经技术革新后,仍有四个等级的产品,但次品率降为 ,一等品率提高为 .如果此时要求1件产品的平均利润不小于4.73万元,则三等品率最多是多少?

18.(本小题满分14分)
设 ,椭圆方程为 ,抛物线方程为 .如图4所示,过点 作 轴的平行线,与抛物线在第一象限的交点为 ,已知抛物线在点 的切线经过椭圆的右焦点 .
(1)求满足条件的椭圆方程和抛物线方程;
(2)设 分别是椭圆长轴的左、右端点,试探究在抛物线上是否存在点 ,使得 为直角三角形?若存在,请指出共有几个这样的点?并说明理由(不必具体求出这些点的坐标).

19.(本小题满分14分)
设 ,函数 , , ,试讨论函数 的单调性.

20.(本小题满分14分)
如图5所示,四棱锥 的底面 是半径为 的圆的内接四边形,其中 是圆的直径, , , 垂直底面 , , 分别是 上的点,且 ,过点 作 的平行线交 于 .
(1)求 与平面 所成角 的正弦值;
(2)证明: 是直角三角形;
(3)当 时,求 的面积.

21.(本小题满分12分)
设 为实数, 是方程 的两个实根,数列 满足 , , ( …).
(1)证明: , ;
(2)求数列 的通项公式;
(3)若 , ,求 的前 项和 .

2008年普通高等学校招生全国统一考试(广东卷)
数学(理科)参考答案

一、选择题:C D C C A D B B
1.C【解析】 ,而 ,即 ,
2.D【解析】 , ,故
3.C【解析】依题意我们知道二年级的女生有380人,那么三年级的学生的人数应该是 ,即总体中各个年级的人数比例为 ,故在分层抽样中应在三年级抽取的学生人数为
4.C 5.A
6.D【解析】不难判断命题 为真命题,命题 为假命题,从而上述叙述中只有 为真命题
7.B【解析】 ,若函数在 上有大于零的极值点,即 有正根。当有 成立时,显然有 ,此时 ,由 我们马上就能得到参数 的范围为 。
8.B
二、填空题:
9.【解析】要结束程序的运算,就必须通过 整除 的条件运算,而同时 也整除 ,那么 的最小值应为 和 的最小公倍数12,即此时有 。
10.【解析】 按二项式定理展开的通项为 ,我们知道 的系数为 ,即 ,也即 ,而 是正整数,故 只能取1。
11.【解析】易知点C为 ,而直线与 垂直,我们设待求的直线的方程为 ,将点C的坐标代入马上就能求出参数 的值为 ,故待求的直线的方程为 。
12.【解析】 ,故函数的最小正周期 。
二、选做题(13—15题,考生只能从中选做两题)
13.【解析】由 解得 ,即两曲线的交点为 。
14.
15.【解析】依题意,我们知道 ,由相似三角形的性质我们有 ,即 。
三、解答题:本大题共6小题,满分80分.解答须写出文字说明,证明过程或演算步骤.
16.解:(1)依题意有 ,则 ,将点 代入得 ,而 , , ,故 ;
(2)依题意有 ,而 ,


17.解:(1) 的所有可能取值有6,2,1,-2; ,

故 的分布列为:

6 2 1 -2

0.63 0.25 0.1 0.02
(2)
(3)设技术革新后的三等品率为 ,则此时1件产品的平均利润为

依题意, ,即 ,解得
所以三等品率最多为
18.解:(1)由 得 ,
当 得 , G点的坐标为 ,
, ,
过点G的切线方程为 即 ,
令 得 , 点的坐标为 ,
由椭圆方程得 点的坐标为 , 即 ,
即椭圆和抛物线的方程分别为 和 ;
(2) 过 作 轴的垂线与抛物线只有一个交点 ,
以 为直角的 只有一个,同理 以 为直角的 只有一个。
若以 为直角,设 点坐标为 , 、 两点的坐标分别为 和 ,

关于 的二次方程有一大于零的解, 有两解,即以 为直角的 有两个,
因此抛物线上存在四个点使得 为直角三角形。
19.解: ,
对于 ,
当 时,函数 在 上是增函数;
当 时,函数 在 上是减函数,在 上是增函数;
对于 ,
当 时,函数 在 上是减函数;
当 时,函数 在 上是减函数,在 上是增函数。
20.解:(1)在 中,

而PD垂直底面ABCD,
,
在 中, ,即 为以 为直角的直角三角形。
设点 到面 的距离为 ,
由 有 ,
即 ,
;
(2) ,而 ,
即 , , , 是直角三角形;
(3) 时 , ,
即 ,
的面积
21.解:(1)由求根公式,不妨设 ,得

(2)设 ,则 ,由
得, ,消去 ,得 , 是方程 的根,
由题意可知,
①当 时,此时方程组 的解记为

即 、 分别是公比为 、 的等比数列,
由等比数列性质可得 , ,
两式相减,得
, ,

,即 ,
②当 时,即方程 有重根, ,
即 ,得 ,不妨设 ,由①可知
, ,
即 ,等式两边同时除以 ,得 ,即
数列 是以1为公差的等差数列,

综上所述,
(3)把 , 代入 ,得 ,解得
更多追问追答
追问
童鞋,你仔细看看你给的答案,你让我情何以堪……
追答
不好意思,刚刚发错了,你加780773042,直接发你!
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式