为什么1=0.9的循环?
3个回答
展开全部
证明1:设0.9(9循环)=x。
那么:10x=9.9(9循环)则9x=10x-x=9.9(9循环)-0.9(9循环)=9。
所以x=1,得证。
证明2:设0.9 (9循环)为无限递缩等比数列。
那么:0.9 (9循环)=0.9+0.09+0.009+....+0.9*0.1的(n-1)次方=0.9*(1-0.1的n次方)/(1-0.1)=1-0.1的n次方。
所以当n趋向于无穷大时0.1的n次方趋向于0 所以0.9 (9循环)=1。
循环小数化分数:
(1)纯循环小数,将纯循环小数改写成分数,分子是一个循环节的数字组成的数;分母各位数字都是9,9的个数与循环节中的数字的个数相同。
例如:0.111...=1/9、0.12341234...=1234/9999。
(2)混循环,将混循环小数改写成分数,分子是不循环部分与第一个循环节连成的数字组成的数,减去不循环部分数字组成的数之差;分母的头几位数字是9,末几位数字是0,9的个数跟循环节的数位相同,0的个数跟不循环部分的数位相同。
例如:0.1234234234…=(1234-1)/9990 0.55889888988898...=(558898-55)/999900。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询