f(x)=f(2-x)的周期是?

 我来答
帐号已注销
2021-10-19 · TA获得超过77.1万个赞
知道小有建树答主
回答量:4168
采纳率:93%
帮助的人:166万
展开全部

首先,如果只有f(x)=f(2-x)这个关系的话是没有周期的。

两函数值会相等,一般有两种情况,一是因为对称相等,二是因为周期而相等。而出现f(x)=f(2-x)这样的式子中,你就要看里面的变量的符号是否相同,若相同,那么应属于周期函数的情况,若相反,就属于对称轴的情况。

如果出现符号相同的情况,如f(x)=f(x+b)

显然一个周期是T=b

若是f(x+a)=f(x+b)

那么它的一个最小正周期可以这样求:

T=|(x+b)-(x+a)|=|b-a|(符号相同相减就可以约掉)

形式:

把相等的式子(或字母表示的数)通过“=”连接起来。

等式分为含有未知数的等式和不含未知数的等式。

例如:

x+1=3——含有未知数的等式;

2+1=3——不含未知数的等式。

需要注意的是,个别含有未知数的等式无解,但仍是等式,例如:x+1=x——x无解。

小蛮子的人文历史观

2021-12-03 · 喜欢人文历史,希望能和同道中人互相交流
小蛮子的人文历史观
采纳数:1258 获赞数:3183

向TA提问 私信TA
展开全部
如果只有f(x)=f(2-x)这个关系的话是没有周期的。如果存在一个不为零的常数T,使得当x取定义域内的每一个值时,f(x+T)=f(x)都成立,那么就把函数y=f(x)叫做周期函数,不为零的常数T叫做这个函数的周期。
事实上,任何一个常数kT(k∈Z,且k≠0)都是它的周期。并且周期函数f(x)的周期T是与x无关的非零常数,且周期函数不一定有最小正周期。
本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式