1个回答
展开全部
你好!!!
由正弦定理:
a/sina=c/sinc=b/sinb;
b/sinb=(a+c)/(sina+sinc)=2b/(sina+sinc);
sinb=1/2(sina+sinc)=sin[(a+c)/2]cos[(a-c)/2];
=sin[(180-b)/2]cos(π/6)=sin(90-b/2)/2;
2sinb=sin(b/2);
4sin(b/2)cos(b/2)=sin(b/2);
cos(b/2)=1/4;
则sin(b/2)=1/4·√15;
所以sinb=sin(b/2)/2=1/8·√15;
希望能够帮助你!!!
由正弦定理:
a/sina=c/sinc=b/sinb;
b/sinb=(a+c)/(sina+sinc)=2b/(sina+sinc);
sinb=1/2(sina+sinc)=sin[(a+c)/2]cos[(a-c)/2];
=sin[(180-b)/2]cos(π/6)=sin(90-b/2)/2;
2sinb=sin(b/2);
4sin(b/2)cos(b/2)=sin(b/2);
cos(b/2)=1/4;
则sin(b/2)=1/4·√15;
所以sinb=sin(b/2)/2=1/8·√15;
希望能够帮助你!!!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询