设AX=0是n元齐次线性方程组,若系数矩阵A的秩r(A)=r
1个回答
展开全部
因为 r(A)=r
所以 Ax=0 的基础解系含 n-r 个解向量.
对Ax=0 的任一个解向量,都可由它的任意n-r个线性无关的解向量线性表示
(否则这 n-r+1个解线性无关,与A的基础解系含n-r个向量矛盾)
所以 它的任意n-r个线性无关的解向量线性表示
所以 Ax=0 的基础解系含 n-r 个解向量.
对Ax=0 的任一个解向量,都可由它的任意n-r个线性无关的解向量线性表示
(否则这 n-r+1个解线性无关,与A的基础解系含n-r个向量矛盾)
所以 它的任意n-r个线性无关的解向量线性表示
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
系科仪器
2024-08-02 广告
2024-08-02 广告
科仪器致力于为微纳薄膜领域提供精益级测量及控制仪器,包括各种光谱椭偏、激光椭偏、反射式光谱等,从性能参数、使用体验、价格、产品可靠性及工艺拓展性等多个维度综合考量,助客户提高研发和生产效率,以及带给客户更好的使用体验。...
点击进入详情页
本回答由系科仪器提供
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询