初一有理数的概念是什么
有理数是整数和分数的集合,整数也可看做是分母为一的分数。下面就和我一起了解一下吧,供大家参考。
有理数的概念
有理数是“数与代数”领域中的重要内容之一,在现实生活中有广泛的应用,是继续学习实数、代数式、方程、不等式、直角坐标系、函数、统计等数学内容以及相关学科知识的基础。数学上,有理数是一个整数a和一个正整数b的比,例如3/8,通则为a/b。0也是有理数。有理数是整数和分数的集合,整数也可看做是分母为一的分数。有理数的小数部分是有限或为无限循环的数。不是有理数的实数称为无理数,即无理数的小数部分是无限不循环的数。
有理数集可以用大写黑正体符号Q代表。但Q并不表示有理数,有理数集与有理数是两个不同的概念。有理数集是元素为全体有理数的集合,而有理数则为有理数集中的所有元素。
初一数学有理数知识点整理
(1)正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数;
(2)正整数、0、负整数统称为整数;
(3)有理数的分类:正有理数、0、负有理数;
(4)数轴:规定了原点、正方向、单位长度的一条直线;(即数轴的三要素)
(5)一般地,当a是正数时,则数轴上表示数a的点在原点的右边,距离原点a个单位长度;表示数-a的点在原点的左边,距离原点a个单位长度;
(6)两点关于原点对称:一般地,设a是正数,则在数轴上与原点的距离为a的点有两个,它们分别在原点的左右,表示-a和a,我们称这两个点关于原点对称;
(7)相反数:只有符号不同的两个数称为互为相反数;
(8)一般地,a的相反数是-a;特别地,0的相反数是0;
(9)相反数的几何意义:数轴上表示相反数的两个点关于原点对称;
(10)a、b互为相反数a+b=0;(即相反数之和为0)
(11)a、b互为相反数;(即相反数之商为-1)
(12)a、b互为相反数|a|=|b|;(即相反数的绝对值相等)
(13)绝对值:一般地,在数轴上表示数a的点到原点的距离叫做a的绝对值;(|a|≥0)
(14)一个正数的绝对值是其本身;一个负数的绝对值是其相反数;0的绝对值是0;
(15)绝对值可表示为:|a|={a(a>0)、0(a=0)、-a(a<0)}
(16)|a|/a=1→a>0;|a|/a=-1→a<0;
(17)有理数的比较:在数轴上表示有理数,它们从左到右的顺序,就是从小到大的顺序。即左边的数小于右边的数。(①正数大于0,0大于负数,正数大于负数;②两个负数,其绝对值大的反而小;)