爱因斯坦的相对论内容是什么

 我来答
百度网友982cae5
2012-06-05
知道答主
回答量:7
采纳率:0%
帮助的人:5.9万
展开全部
·第一部分 狭义相对论
  1.几何命题的物理意义   2.坐标系   3.经典力学中的空间和时间   4.伽利略坐标系   5.狭义相对性原理   6.经典力学中所用到的速度相加原理   7.光的传播定律与相对性原理的表面抵触   8.物理学的时间观   9.同时性的相对性   10.距离概念的相对性   11.洛伦兹变换   12.量杆和时钟在运动时的行为   13.速度相加原理:斐索试验   14.相对论的启发作用   15.狭义相对论的普遍性结果   16.经验和狭义相对论   17.四维空间
·第二部分 广义相对论
  1.狭义和广义相对性原理   2.引力场   3.引力场的思想试验   4.惯性质量和引力质量相等是广义相对性公设的一个论据   5.等效原理   6.经典力学的基础和狭义相对伦的基础在哪些方面不能令人满意   7.广义相对性原理的几个推论   8.在转动的参考物上的钟和量杆的行为   9.欧几里得和非欧几里得连续区域   10.高斯坐标   11.狭义相对论得时空连续区可以当作欧几里得连续区   12.广义相对论得时空连续区不是欧几里得连续区   13.广义相对论原理的严格表述   14.在广义相对性原理的基础上理解引力问题.
论动体的电动力学
  爱因斯坦   根据范岱年、赵中立、许良英编译《爱因斯坦文集》编辑   大家知道,麦克斯韦电动力学——象现在通常为人们所理解的那样——应用到运动的物体上时,就要引起一些不对称,而这种不对称似乎不是现象所固有的。比如设想一个磁体同一个导体之间的电动力的相互作用。在这里,可观察到的现象只同导体和磁体的相对运动有关,可是按照通常的看法,这两个物体之中,究竟是这个在运动,还是那个在运动,却是截然不同的两回事。如果是磁体在运动,导体静止着,那么在磁体附近就会出现一个具有一定能量的电场,它在导体各部分所在的地方产生一股电流。但是如果磁体是静止的,而导体在运动,那么磁体附近就没有电场,可是在导体中却有一电动势,这种电动势本身虽然并不相当于能量,但是它——假定这里所考虑的两种情况中的相对运动是相等的——却会引起电流,这种电流的大小和路线都同前一情况中由电力所产生的一样。   堵如此类的例子,以及企图证实地球相对于“光煤质”运动的实验的失败,引起了这样一种猜想:绝对静止这概念,不仅在力学中,而且在电动力学中也不符合现象的特性,倒是应当认为,凡是对力学方程适用的一切坐标系,对于上述电动力学和光学的定律也一样适用,对于第一级微量来说,这是已经证明了的。我们要把这个猜想(它的内容以后就称之为“相对性原理”)提升为公设,并且还要引进另一条在表面上看来同它不相容的公设:光在空虚空间里总是以一确定的速度 C 传播着,这速度同发射体的运动状态无关。由这两条公设,根据静体的麦克斯韦理论,就足以得到一个简单而又不自相矛盾的动体电动力学。“光以太”的引用将被证明是多余的,因为按照这里所要阐明的见解,既不需要引进一个共有特殊性质的“绝对静止的空间”,也不需要给发生电磁过程的空虚实间中的每个点规定一个速度矢量。   这里所要闸明的理论——象其他各种电动力学一样——是以刚体的运动学为根据的,因为任何这种理论所讲的,都是关于刚体(坐标系)、时钟和电磁过程之间的关系。对这种情况考虑不足,就是动体电动力学目前所必须克服的那些困难的根源。
编辑本段1、同时性的定义
概述
  设有一个牛顿力学方程在其中有效的坐标系。为了使我们的陈述比较严谨,并且便于将这坐标系同以后要引进来的别的坐标系在字面上加以区别,我们叫它“静系”。
概念
  如果一个质点相对于这个坐标系是静止的,那么它相对于后者的位置就能够用刚性的量杆按照欧儿里得几何的方法来定出,并且能用笛卡儿坐标来表示。
坐标值
  如果我们要描述一个质点的运动,我们就以时间的函数来给出它的坐标值。现在我们必须记住,这样的数学描述,只有在我们十分清楚地懂得“时间”在这里指的是什么之后才有物理意义。我们应当考虑到:凡是时间在里面起作用的我们的一切判断,总是关于同时的事件的判断。比如我说,“那列火车7点钟到达这里”,这大概是说:“我的表的短针指到 7 同火车的到达是同时的事件。”   也许有人认为,用“我的表的短针的位置”来代替“时间”,也许就有可能克服由于定义“时间”而带来的一切困难。事实上,如果问题只是在于为这只表所在的地点来定义一种时间,那么这样一种定义就已经足够了;但是,如果问题是要把发生在不同地点的一系列事件在时间上联系起来,或者说——其结果依然一样——要定出那些在远离这只表的地点所发生的事件的时间,那么这样的定义就不够了。   当然,我们对于用如下的办法来测定事件的时间也许会成到满意,那就是让观察者同表一起处于坐标的原点上,而当每一个表明事件发生的光信号通过空虚空间到达观察者时,他就把当时的时针位置同光到达的时间对应起来。但是这种对应关系有一个缺点,正如我们从经验中所已知道的那样,它同这个带有表的观察者所在的位置有关。通过下面的考虑,我们得到一种此较切合实际得多的测定法。   如果在空间的A点放一只钟,那么对于贴近 A 处的事件的时间,A处的一个观察者能够由找出同这些事件同时出现的时针位置来加以测定,如果.又在空间的B点放一只钟——我们还要加一句,“这是一只同放在 A 处的那只完全一样的钟。” 那么,通过在 B 处的观察者,也能够求出贴近 B 处的事件的时间。但要是没有进一步的规定,就不可能把 A 处的事件同 B 处的事件在时间上进行比较;到此为止,我们只定义了“ A 时间”和“ B 时间”,但是并没有定义对于 A 和 B 是公共的“时间”。只有当我们通过定义,把光从 A 到 B 所需要的“时间”,规定为等于它从 B 到 A 所需要的“时间”,我们才能够定义 A 和 B 的公共“时间”。设在“A 时间”tA ,从 A 发出一道光线射向 B ,它在“ B 时间”, tB 。又从 B 被反射向 A ,而在“A时间”t`A回到A处。如果   tB-tA=t’A-t’B   那么这两只钟按照定义是同步的。   我们假定,这个同步性的定义是可以没有矛盾的,并且对于无论多少个点也都适用,于是下面两个关系是普遍有效的:   1 .如果在 B 处的钟同在 A 处的钟同步,那么在 A 处的钟也就同B处的钟同步。   2 .如果在 A 处的钟既同 B 处的钟,又同 C 处的钟同步的,那么, B 处同 C 处的两只钟也是相互同步的。   这样,我们借助于某些(假想的)物理经验,对于静止在不同地方的各只钟,规定了什么叫做它们是同步的,从而显然也就获得了“同时”和“时间”的定义。一个事件的“时间”,就是在这事件发生地点静止的一只钟同该事件同时的一种指示,而这只钟是同某一只特定的静止的钟同步的,而且对于一切的时间测定,也都是同这只特定的钟同步的。   根据经验,我们还把下列量值   2|AB|/(t’A-tA)=c   当作一个普适常数(光在空虚空间中的速度)。   要点是,我们用静止在静止坐标系中的钟来定义时间,由于它从属于静止的坐标系,我们把这样定义的时间叫做“静系时间”。
编辑本段2 关于长度和时间的相对性
概述
  下面的考虑是以相对性原理和光速不变原理为依据的,这两条原理我们定义,如下。   1 .物理体系的状态据以变化的定律,同描述这些状态变化时所参照的坐标系究竞是用两个在互相匀速移动着的坐标系中的哪一个并无关系。   2 .任何光线在“静止的”坐标系中都是以确定的速度 c运动着,不管这道光线是由静止的还是运动的物体发射出来的。由此,得   光速=光路的路程/时间间隔   这里的“时间间隔”,是依照§1中所定义的意义来理解的。   设有一静止的刚性杆;用一根也是静止的量杆量得它的长度是l.我们现在设想这杆的轴是放在静止坐标系的 X 轴上,然后使这根杆沿着X轴向 x 增加的方向作匀速的平行移动(速度是 v )。我们现在来考查这根运动着的杆的长度,并且设想它的长度是由下面两种操作来确定的:   a )观察者同前面所给的量杆以及那根要量度的杆一道运动,并且直接用量杆同杆相叠合来量出杆的长度,正象要量的杆、观察者和量杆都处于静止时一样。   b )观察者借助于一些安置在静系中的、并且根据§1作同步运行的静止的钟,在某一特定时刻 t ,求出那根要量的杆的始末两端处于静系中的哪两个点上。用那根已经使用过的在这种情况下是静止的量杆所量得的这两点之间的距离,也是一种长度,我们可以称它为“杆的长度”。   由操作 a )求得的长度,我们可称之为“动系中杆的长度”。根据相对性原理,它必定等于静止杆的长度 l 。   由操作 b )求得的长度,我们可称之为“静系中(运动着的)杆的长度”。这种长度我们要根据我们的两条原理来加以确定,并且将会发现,它是不同于 l的。   通常所用的运动学心照不宣地假定了:用上面这两种操作所测得的长度彼此是完全相等的,或者换句话说,一个运动着的刚体,于时期 t ,在几何学关系上完全可以用静止在一定位置上的同一物体来代替。   此外,我们设想,在杆的两端(A和B),都放着一只同静系的钟同步了的钟,也就是说,这些钟在任何瞬间所报的时刻,都同它们所在地方的“静系时间”相一致;因此,这些钟也是“在静系中同步的”。   我们进一步设想,在每一只钟那里都有一位运动着的观察者同它在一起,而且他们把§1中确立起来的关于两只钟同步运行的判据应用到这两只钟上。设有一道光线在时 间tA从 A 处发出,在时间tB于 B 处被反射回,并在时间t`A返回到 A 处。考虑到光速不变原理,我们得到:   tB-tA=rAB/(c-v) 和 t’A-tB=rAB/(c+v)   此处 rAB表示运动着的杆的长度——在静系中量得的。因此,同动杆一起运动着的观察者会发现这两只钟不是同步进行的,可是处在静系中的观察者却会宣称这两只钟是同步的。   由此可见,我们不能给予同时性这概念以任何绝对的意义;两个事件,从一个坐标系看来是同时的,而从另一个相对于这个坐标系运动着的坐标系看来,它们就不能再被认为是同时的事件了。
阿明八13
2012-06-05
知道答主
回答量:6
采纳率:0%
帮助的人:3.4万
展开全部
狭义相对论是建立在四维时空观上的一个理论,因此要弄清相对论的内容,要先对相对论的时空观有个大体了解。在数学上有各种多维空间,但目前为止,我们认识的物理世界只是四维,即三维空间加一维时间。现代微观物理学提到的高维空间是另一层意思,只有数学意义,在此不做讨论。
四维时空是构成真实世界的最低维度,我们的世界恰好是四维,至于高维真实空间,至少现在我们还无法感知。我在一个帖子上说过一个例子,一把尺子在三维空间里(不含时间)转动,其长度不变,但旋转它时,它的各坐标值均发生了变化,且坐标之间是有联系的。四维时空的意义就是时间是第四维坐标,它与空间坐标是有联系的,也就是说时空是统一的,不可分割的整体,它们是一种”此消彼长”的关系。
四维时空不仅限于此,由质能关系知,质量和能量实际是一回事,质量(或能量)并不是独立的,而是与运动状态相关的,比如速度越大,质量越大。在四维时空里,质量(或能量)实际是四维动量的第四维分量,动量是描述物质运动的量,因此质量与运动状态有关就是理所当然的了。在四维时空里,动量和能量实现了统一,称为能量动量四矢。另外在四维时空里还定义了四维速度,四维加速度,四维力,电磁场方程组的四维形式等。值得一提的是,电磁场方程组的四维形式更加完美,完全统一了电和磁,电场和磁场用一个统一的电磁场张量来描述。四维时空的物理定律比三维定律要完美的多,这说明我们的世界的确是四维的。可以说至少它比牛顿力学要完美的多。至少由它的完美性,我们不能对它妄加怀疑。
相对论中,时间与空间构成了一个不可分割的整体——四维时空,能量与动量也构成了一个不可分割的整体——四维动量。这说明自然界一些看似毫不相干的量之间可能存在深刻的联系。在今后论及广义相对论时我们还会看到,时空与能量动量四矢之间也存在着深刻的联系。
物质在相互作用中作永恒的运动,没有不运动的物质,也没有无物质的运动,由于物质是在相互联系,相互作用中运动的,因此,必须在物质的相互关系中描述运动,而不可能孤立的描述运动。也就是说,运动必须有一个参考物,这个参考物就是参考系。
伽利略曾经指出,运动的船与静止的船上的运动不可区分,也就是说,当你在封闭的船舱里,与外界完全隔绝,那么即使你拥有最发达的头脑,最先进的仪器,也无从感知你的船是匀速运动,还是静止。更无从感知速度的大小,因为没有参考。比如,我们不知道我们整个宇宙的整体运动状态,因为宇宙是封闭的。爱因斯坦将其引用,作为狭义相对论的第一个基本原理:狭义相对性原理。其内容是:惯性系之间完全等价,不可区分。
著名的麦克尔逊--莫雷实验彻底否定了光的以太学说,得出了光与参考系无关的结论。也就是说,无论你站在地上,还是站在飞奔的火车上,测得的光速都是一样的。这就是狭义相对论的第二个基本原理,光速不变原理。
由这两条基本原理可以直接推导出相对论的坐标变换式,速度变换式等所有的狭义相对论内容。比如速度变幻,与传统的法则相矛盾,但实践证明是正确的,比如一辆火车速度是10m/s,一个人在车上相对车的速度也是10m/s,地面上的人看到车上的人的速度不是20m/s,而是(20-10^(-15))m/s左右。在通常情况下,这种相对论效应完全可以忽略,但在接近光速时,这种效应明显增大,比如,火车速度是0。99倍光速,人的速度也是0。99倍光速,那么地面观测者的结论不是1。98倍光速,而是0。999949倍光速。车上的人看到后面的射来的光也没有变慢,对他来说也是光速。因此,从这个意义上说,光速是不可超越的,因为无论在那个参考系,光速都是不变的。速度变换已经被粒子物理学的无数实验证明,是无可挑剔的。正因为光的这一独特性质,因此被选为四维时空的唯一标尺。

爱因斯坦相对论
汽车是运动的,树木是静止的,这样说大家都能接受,但如果反过来说树木是运动的,汽车是静止的则会有很多人说你痴人说梦。其实在物理学上这两种说法都是正确的,只是所选的参照系不同而已。这也是爱因斯坦伟大的相对论创建的基本出发点。

相对论创建的第一个假设是:所有参照系都遵循相同的物理定律。无论在地上还是在匀速行驶的汽车上,用尺子量一个木板或用秒表量一个钟摆晃动10个周期的时间,结果都是相同的。但是如果木板或钟摆在一个以一定速度驶过测量者面前的车上,重复上面的测量就会得到不同的结果。这种不同就是由所有参照系都遵循相同的物理定律造成的。

相对论创建的第二个假设是:光速在所有参照系中都是恒定的。刚一听好像和第一条假设说的是同一件事,可是仔细想想就会发现其中的奥妙。第二条假设的意思是无论你坐在飞驰的火车里还是静止的躺椅中,光速都保持恒定,和你所处的运动状态无关。原因就在于我们在处理日常物理目标的速度时得到的都是合速度。例如你驾驶一辆时速为25千米每小时的越野吉普,一位乘客以相对你10千米每小时的速度用弹弓射击前面的岩石,那么弹珠的实际运动速度就应该是35千米每小时。可是如果打开前车灯,按照常识光速是334,800,000千米每小时,加上车的运动速度,光的实际速度就应该是334,800,025千米每小时,可实际测量光速还是334,800,000千米每小时。为什么同样的参照系光和实际物体得到的结果不同呢?

要解释它首先要从速度的定义说起。单位时间内通过的距离叫做速度,即速度是距离被时间除得到的。长度收缩学说认为一个具有质量的物体在它运动方向上的测量长度是相对缩短的,达到光速时长度相应缩短为零。学说成立的基础是测量者和被测量物处于不同的参照系,且只发生在物体运动方向,不会影响和运动垂直方向的长度。也就是说当你驾驶一辆速度接近光速的汽车时,静止的观察者看到的车长远远小于它的实际车长,而高度方向没有变化。这种情况反过来说,即当你驾驶飞快的汽车通过一个门洞时,从你的角度来看这段距离要比实际距离短得多。这种情况在日常生活中经常被忽略不被注意是因为物体运动速度都很慢,长度收缩现象不明显。时间和长度一样也会随着参照系的变化而变化,这就是所谓的时间膨胀。随着运动速度的增加时间会相对变慢,一般情况下都比较微弱不易觉察,达到光速时时间会完全停止。但是这种现象也只有观察者和时钟不在同一参照系时才能发生,为了证明这一结论,两个原子钟被调节成完全相同,一个留在地球上,一个放在高速飞行的航天飞机上,当飞机降落时会发现飞机上的原子钟要比地球上的原子钟慢,慢的时间和由爱因斯坦相对论推算出来的结果相同。也就是说航天飞机上原子钟记录的时间相对地球上静止的原子钟的时间膨胀了。

理解了近光速或等光速运动时的长度和时间的变化,车头灯光速的问题就不难解释了,因为光运动和我们普通运动所涉及的距离和时间不同而已。

相对论还有一个重要的概念就是同时性,运动状态的不同会使人们观察到物体动作的先后顺序不同,例如屋子中有两盏灯,A站在两盏灯中间,B以一定速度踩着滑板向一盏灯运动正好到达中间。当两灯同时打开时A看到的现象是两灯同时亮,而B看到的却是面对他的那盏先亮,背对他的那盏后亮。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
谁是谁的谁407
2012-06-05
知道答主
回答量:3
采纳率:0%
帮助的人:4798
展开全部
爱因斯坦相对论是关于时空和引力的基本理论,主要由爱因斯坦(Albert Einstein)创立,分为狭义相对论(特殊相对论)和广义相对论(一般相对论)。相对论的基本假设是相对性原理,即物理定律与参照系的选择无关。狭义相对论讨论的是匀速直线运动的惯性参照系之间的物理定律,后者则推广到具有加速度的参照系中(非惯性系),并在等效原理的假设下,广泛应用于引力场中。相对论颠覆了人类对宇宙和自然的常识性观念,提出了“时间和空间的相对性”,“四维时空”,“弯曲空间”等全新的概念。狭义相对论提出于1905年,广义相对论提出于1915年。
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
宇宙观察
2020-02-27 · 致力于科普天文和宇宙知识。
宇宙观察
采纳数:237 获赞数:9173

向TA提问 私信TA
展开全部

物理学是怎样从牛顿时代,跨进爱因斯坦时代的

本回答被网友采纳
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式