为什么说不可导点,也是极值点?什么叫不可导点?为什么不可导点,不可求导?
1个回答
展开全部
因为这点不在定义域上.既然这点不在定义域上,那么这点就不可导,既然不可导,就叫做不可导点,既然是不可导点,自然不可求导.
例如f(x)=x^2,x≠0,那么,这个函数在点(0,0),就不可导,即f'(0)=lim[(f(x)-f(0))/(x-0)],x-0→0,因为定义域上没有x=0这点,则该式子没有意义,但是极限值还是存在的,为0,即limf(0)=0,x→0,就是说,x不能为0,但可以无限接近0,对应的f(x)也是不能为0,但是也可以无限接近0.
例如f(x)=x^2,x≠0,那么,这个函数在点(0,0),就不可导,即f'(0)=lim[(f(x)-f(0))/(x-0)],x-0→0,因为定义域上没有x=0这点,则该式子没有意义,但是极限值还是存在的,为0,即limf(0)=0,x→0,就是说,x不能为0,但可以无限接近0,对应的f(x)也是不能为0,但是也可以无限接近0.
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |