余数问题中“和同加和,余同取余,差同取差,最小公倍数做周期”怎么理解?

利用来解决余数问题如一个三位数,被9除余7,被5除余2,被4除余3,这样的三位数有几个?之类问题... 利用来解决余数问题如一个三位数,被9除余7,被5除余2,被4除余3,这样的三位数有几个?之类问题 展开
wshg888555
2012-06-06 · TA获得超过353个赞
知道答主
回答量:50
采纳率:100%
帮助的人:14.5万
展开全部
这是同余问题的口诀。

所谓同余问题,就是给出“一个数除以几个不同的数”的余数,反求这个数,称作同余问题。
首先要对这几个不同的数的最小公倍数心中有数,下面以4、5、6为例,请记住它们的最小公倍数是60。

1、差同减差:用一个数除以几个不同的数,得到的余数,与除数的差相同,
此时反求的这个数,可以选除数的最小公倍数,减去这个相同的差数,称为:“差同减差”。
例:“一个数除以4余1,除以5余2,除以6余3”,因为4-1=5-2=6-3=3,所以取-3,表示为60n-3。
【60后面的“n”请见4、,下同】

2、和同加和:用一个数除以几个不同的数,得到的余数,与除数的和相同,
此时反求的这个数,可以选除数的最小公倍数,加上这个相同的和数,称为:“和同加和”。
例:“一个数除以4余3,除以5余2,除以6余1”,因为4+3=5+2=6+1=7,所以取+7,表示为60n+7。

3、余同取余:用一个数除以几个不同的数,得到的余数相同,
此时反求的这个数,可以选除数的最小公倍数,加上这个相同的余数,称为:“余同取余”。
例:“一个数除以4余1,除以5余1,除以6余1”,因为余数都是1,所以取+1,表示为60n+1。

4、最小公倍加:所选取的数加上除数的最小公倍数的任意整数倍(即上面1、2、3中的60n)都满足条件,
称为:“最小公倍加”,也称为:“公倍数作周期”。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式