高数里的驻点极值点,拐点的区别,怎么计算
1个回答
展开全部
一、位置不同:
驻点极值点是x轴上的点,拐点是曲线上的点。
驻点及一阶导不存在的点有可能是极值点。
二阶导为0的点及二阶导不存在的点有可能是拐点。
二、作用不同:
拐点可能是二阶导数为0或二阶导数不存在的点。求出所有二阶导数为0或不存在点,再进一步分析。
极值点可能是一阶导数为0的点,也可能是一阶导数不存在的点。所以求极值点的时候,找出所有一阶导数为0的点和不可导点。对这些点进行进一步的分析。
驻点是f'(x)=0的点是极值点;原函数在x=0点导数不为0,不是驻点。
算法:单变量函数的极值求法
a. 求导数f'(x);
b. 求方程的根f'(x)=0的根;
c. 检查f'(x)在函数图象左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值。
特别注意:
f'(x)无意义的点也要讨论,即可先求出f'(x)=0的根和f'(x)无意义的点,这些点都称为可疑点,再用定义去判断。 例如:f(x)=|X|在x=0 在的导数是不存在的。
以上内容参考来源:百度百科-极值点
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询