已知椭圆的两个焦点为椭圆上一点满足求椭圆的方程

已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点为F1,F2,椭圆上一点M(2√6∕3,√3∕3)满足→MF1•→MF2=0。(1)求椭圆的... 已知椭圆x^2/a^2+y^2/b^2=1(a>b>0)的两个焦点为F1,F2,椭圆上一点M(2√6∕3,√3∕3)满足→MF1•→MF2=0。(1)求椭圆的方程:(2)若直线L:y=kx+√2与椭圆恒有不同交点A、B,且→OA •→OB> 1(O为坐标原点),求K的范围. 展开
say22
2012-06-06 · 超过28用户采纳过TA的回答
知道答主
回答量:108
采纳率:0%
帮助的人:76万
展开全部
设F1(c,0) ,F2(-c,0)
由→MF1•→MF2=0得出 c^2=3
即a^2-b^2=3
点M(2√6∕3,√3∕3)在椭圆上,把M代入椭圆方程就可以求出来了
得出a=2,b=1.

2.把直线L代入椭圆方程,求出A,B的坐标(用k表示),根据→OA •→OB> 1(O为坐标原点)就可以求出k的取值范围了。
这些都是很通用的解法,不用花费太多时间想,就是计算有点麻烦。希望对你有帮助!
追问
其实我是想知道最后答案是什么
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式