5个回答
展开全部
按公式。 在整式的乘、除中,我们学过若干个乘法公式,现将其反向使用,即为因式分解中常用的公式,例如:
1.a^+2ab+b^=(a+b)^
2.a^-b^=(a+b)(a-b)
3.x^-3x+2=(x-1)(x-2)
4.(a1+a2+.....+an)^2=(a1^2+a2^2+a3^2+......+an^2)+(2a1*a2*a3*....an)+(2a2*a3*a4*......an)+(2a3*a4*a5.....an)+......+2an-1*an
5.a^n-b^n=(a-b)[(a^(n-1)+a^(n-2)*b+...+a*b^(n-2)+b^(n-1)],n是整数
6.a^n+b^n=(a+b)[(a^(n-1)-a^(n-2)*b+...+(-1)^(n-2)*a*b^(n-2)+(-1)^(n-1)*b^(n-1)],n是奇数
二.拆项、添项法
因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.
1)x9+x6+x3-3;
(2)(m2-1)(n2-1)+4mn;
(3)(x+1)4+(x2-1)2+(x-1)4;
(4)a3b-ab3+a2+b2+1.
解 (1)将-3拆成-1-1-1.
原式=x9+x6+x3-1-1-1
=(x9-1)+(x6-1)+(x3-1)
=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)
=(x3-1)(x6+2x3+3)
=(x-1)(x2+x+1)(x6+2x3+3).
(2)将4mn拆成2mn+2mn.
原式=(m2-1)(n2-1)+2mn+2mn
=m2n2-m2-n2+1+2mn+2mn
=(m2n2+2mn+1)-(m2-2mn+n2)
=(mn+1)2-(m-n)2
=(mn+m-n+1)(mn-m+n+1).
(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.
原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4
=〔(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2
=〔(x+1)2+(x-1)2]2-(x2-1)2
=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).
(4)添加两项+ab-ab.
原式=a3b-ab3+a2+b2+1+ab-ab
=(a3b-ab3)+(a2-ab)+(ab+b2+1)
=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)
=a(a-b)〔b(a+b)+1]+(ab+b2+1)
=[a(a-b)+1](ab+b2+1)
=(a2-ab+1)(b2+ab+1).
三.换元法
换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.
分解因式:(x2+x+1)(x2+x+2)-12.
分析 将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.
解 设x2+x=y,则
原式=(y+1)(y+2)-12=y2+3y-10
=(y-2)(y+5)=(x2+x-2)(x2+x+5)
=(x-1)(x+2)(x2+x+5)
1.a^+2ab+b^=(a+b)^
2.a^-b^=(a+b)(a-b)
3.x^-3x+2=(x-1)(x-2)
4.(a1+a2+.....+an)^2=(a1^2+a2^2+a3^2+......+an^2)+(2a1*a2*a3*....an)+(2a2*a3*a4*......an)+(2a3*a4*a5.....an)+......+2an-1*an
5.a^n-b^n=(a-b)[(a^(n-1)+a^(n-2)*b+...+a*b^(n-2)+b^(n-1)],n是整数
6.a^n+b^n=(a+b)[(a^(n-1)-a^(n-2)*b+...+(-1)^(n-2)*a*b^(n-2)+(-1)^(n-1)*b^(n-1)],n是奇数
二.拆项、添项法
因式分解是多项式乘法的逆运算.在多项式乘法运算时,整理、化简常将几个同类项合并为一项,或将两个仅符号相反的同类项相互抵消为零.在对某些多项式分解因式时,需要恢复那些被合并或相互抵消的项,即把多项式中的某一项拆成两项或多项,或者在多项式中添上两个仅符合相反的项,前者称为拆项,后者称为添项.拆项、添项的目的是使多项式能用分组分解法进行因式分解.
1)x9+x6+x3-3;
(2)(m2-1)(n2-1)+4mn;
(3)(x+1)4+(x2-1)2+(x-1)4;
(4)a3b-ab3+a2+b2+1.
解 (1)将-3拆成-1-1-1.
原式=x9+x6+x3-1-1-1
=(x9-1)+(x6-1)+(x3-1)
=(x3-1)(x6+x3+1)+(x3-1)(x3+1)+(x3-1)
=(x3-1)(x6+2x3+3)
=(x-1)(x2+x+1)(x6+2x3+3).
(2)将4mn拆成2mn+2mn.
原式=(m2-1)(n2-1)+2mn+2mn
=m2n2-m2-n2+1+2mn+2mn
=(m2n2+2mn+1)-(m2-2mn+n2)
=(mn+1)2-(m-n)2
=(mn+m-n+1)(mn-m+n+1).
(3)将(x2-1)2拆成2(x2-1)2-(x2-1)2.
原式=(x+1)4+2(x2-1)2-(x2-1)2+(x-1)4
=〔(x+1)4+2(x+1)2(x-1)2+(x-1)4]-(x2-1)2
=〔(x+1)2+(x-1)2]2-(x2-1)2
=(2x2+2)2-(x2-1)2=(3x2+1)(x2+3).
(4)添加两项+ab-ab.
原式=a3b-ab3+a2+b2+1+ab-ab
=(a3b-ab3)+(a2-ab)+(ab+b2+1)
=ab(a+b)(a-b)+a(a-b)+(ab+b2+1)
=a(a-b)〔b(a+b)+1]+(ab+b2+1)
=[a(a-b)+1](ab+b2+1)
=(a2-ab+1)(b2+ab+1).
三.换元法
换元法指的是将一个较复杂的代数式中的某一部分看作一个整体,并用一个新的字母替代这个整体来运算,从而使运算过程简明清晰.
分解因式:(x2+x+1)(x2+x+2)-12.
分析 将原式展开,是关于x的四次多项式,分解因式较困难.我们不妨将x2+x看作一个整体,并用字母y来替代,于是原题转化为关于y的二次三项式的因式分解问题了.
解 设x2+x=y,则
原式=(y+1)(y+2)-12=y2+3y-10
=(y-2)(y+5)=(x2+x-2)(x2+x+5)
=(x-1)(x+2)(x2+x+5)
2012-06-06
展开全部
先找最简公分母,然后将最简公分母分别与每一个式子相乘就可以了。最后就可以进行计算了。其实一点都不难,多做一些题就行了,还要沉下心来做》
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
说白点就是记一些常用公式和平时多练题,因式分解这东西没有啥技巧主要是多练,见的式子多了一眼就看出来了,这是我高中三年总结出来的。学弟要加油啊!
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
用十字相乘法
假设x^2+3x-4
十字相乘法是把x^2的系数当成1x1
常数项当成-1x4
1 -1
x
1 4
使得交叉相乘=x项系数3
x^2+3x-4=(x-1)(x+4)
6x^2-x-1
2 -1
X
3 1
6x^2-x-1=(2x-1)(3x+1)
假设x^2+3x-4
十字相乘法是把x^2的系数当成1x1
常数项当成-1x4
1 -1
x
1 4
使得交叉相乘=x项系数3
x^2+3x-4=(x-1)(x+4)
6x^2-x-1
2 -1
X
3 1
6x^2-x-1=(2x-1)(3x+1)
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
公式法 十字相乘 好多呢 具体的题发一个给你讲
追问
最简单的,能解开就行
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询
广告 您可能关注的内容 |