柯西不等式求解:已知a,b,c为正数,求证:(a/b+b/c+c/a)(b/a+c/b+a/c)>=9. 我来答 1个回答 #合辑# 面试问优缺点怎么回答最加分? 回从凡7561 2022-06-15 · TA获得超过795个赞 知道小有建树答主 回答量:297 采纳率:100% 帮助的人:53.3万 我也去答题访问个人页 关注 展开全部 a,b,c为正数,所以a/b,b/c,c/a,b/a,c/b,a/c为正数(a/b+b/c+c/a)(b/a+c/b+a/c)>= {3 * 三次根号[(a/b)*(b/c)*(c/a)]} {3 * 三次根号[(b/a)*(c/b)*(a/c)]} =3*3=9 (等于号在a/b=b/c=c/a 及 b/a=c/b=a/c成... 已赞过 已踩过< 你对这个回答的评价是? 评论 收起 推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询 为你推荐: