求高阶导数:y=(1+x^2)/(1-x^2)
1个回答
展开全部
y=(1+x^2)/(1-x^2)
= [2-(1-x^2)]/(1-x^2)
= 2/(1-x^2) - 1
= 1/(1+x) + 1/(1-x) - 1
= 1/(x+1) - 1/(x-1) - 1
y(n) = (-1)^n*n!*1/(x+1)^(n+1) - (-1)^n*n!*1/(x-1)^(n+1)
= (-1)^n*n!*[ 1/(x+1)^(n+1) - 1/(x-1)^(n+1) ]
= [2-(1-x^2)]/(1-x^2)
= 2/(1-x^2) - 1
= 1/(1+x) + 1/(1-x) - 1
= 1/(x+1) - 1/(x-1) - 1
y(n) = (-1)^n*n!*1/(x+1)^(n+1) - (-1)^n*n!*1/(x-1)^(n+1)
= (-1)^n*n!*[ 1/(x+1)^(n+1) - 1/(x-1)^(n+1) ]
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询