直角三角形ABC的斜边AB=2,内切圆半径为r,则r的最大值是

大王997
2013-06-08
知道答主
回答量:16
采纳率:0%
帮助的人:10.4万
展开全部
设直角三角形ABC三边长分别为
AB=c(斜边),BC=a,AC=b
其内切圆半径为r,则有如下关系
a b=c 2r
证明略
a² b²=c²=4
a b=c 2r=2 2r
根据2(a² b²)=(a b)²建立不等式
4×2=(2 2r)²
r=(根号2)-1
内切圆半径是最大值为(根号2)-1
呐喊的汪人
2012-06-06 · TA获得超过1.4万个赞
知道大有可为答主
回答量:3777
采纳率:53%
帮助的人:768万
展开全部
设内切圆的三个切点把直角三角形的三条边分成a,b,c,d,e,f,六段,其中ab组成一条直角边,cd组成另一条直角边,ef组成斜边,自己画个图,我们可以证明a=e,b=c=r,d=f,已知e﹢f=2,则由勾股定理得出(a﹢r)的平方+(d﹢r)的平方﹦(e﹢f)的平方﹦4,而a=2‐d,把a代入前面平方等式中得到一个有关r与d的二元二次方程,然后求r的最大值
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
zrc牧羊人
2012-06-06 · TA获得超过334个赞
知道答主
回答量:148
采纳率:0%
帮助的人:143万
展开全部
设直角边是a,b;则a^2+b^2=4;ab=0.5*((a+b)^2-(a^2+b^2))=0.5*((a+b)^2-4),面积S=0.5*ab=0.5*(a+b+2)*r,于是r=ab/(a+b+2)=((a+b)^2-4)/(a+b+2);你把(a+b)当做整体求出r最大值就行了;注意:a+b<=2倍根号2
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
ldw风雨无阻
2012-06-06 · TA获得超过124个赞
知道答主
回答量:84
采纳率:0%
帮助的人:64.5万
展开全部
√2-1
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
收起 1条折叠回答
收起 更多回答(2)
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式