在三角形ABC中,AD平分角BAC,CE垂直AD于E,求证角ACE=角B+角ECD

 我来答
游戏王17
2022-09-09 · TA获得超过892个赞
知道小有建树答主
回答量:214
采纳率:0%
帮助的人:64.5万
展开全部
作辅助线,延长线段CE到AB,相交点为F.
∵AD平分∠BAC(已知)
∴∠BAD=∠DAC(角平分线的定义)
又∵CE⊥AD(已知)
∴∠AEC=∠AEF(垂直的定义)
∵∠ACE=180°-∠DAC
∠AFE=180°-∠BAD(三角形内角和为180°)
∴∠ACE=∠AFE(等式的性质)
又∵∠AFE是△BFC的外角
∴∠AFE=∠B+∠FCB(三角形的外交等于不相邻两个内角的和)
∴∠ACE=∠B+∠FCB(等量代换)
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式