高数 ∫1+sin²2X/1+cos²2X
2个回答
展开全部
I = ∫[(1+sin²2x)/(1+cos²2x)]dx = ∫[(3-cos4x)/(3+cos4x)]dx
= ∫[(6-3-cos4x)/(3+cos4x)]dx = (3/2)∫[1/(3+cos4x)]d(4x) - ∫dx
令 tan2x = u, 则 cos4x = (1-u^2)/(1+u^2), d(4x) = 2du/(1+u^2)
I1 = ∫[1/(3+cos4x)]d(4x) = ∫du/(2+u^2) = (1/√2)arctan(u/√2)
= (√2/2)arctan(tan2x/√2)
I = (3√2/4)arctan(tan2x/√2) - x + C
= ∫[(6-3-cos4x)/(3+cos4x)]dx = (3/2)∫[1/(3+cos4x)]d(4x) - ∫dx
令 tan2x = u, 则 cos4x = (1-u^2)/(1+u^2), d(4x) = 2du/(1+u^2)
I1 = ∫[1/(3+cos4x)]d(4x) = ∫du/(2+u^2) = (1/√2)arctan(u/√2)
= (√2/2)arctan(tan2x/√2)
I = (3√2/4)arctan(tan2x/√2) - x + C
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询