已知a.b.c∈R*,a+b+c=1,求证1/a+1/b+1/c≥9
1个回答
展开全部
a+b+c=1
1/a+1/b+1/c
=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
=3+(a/b+b/a)+(a/c+c/a)+(b/c+c/b)
而a.b.c∈R*,那么a/b>0 b/c>0 a/c>0
a/b+b/a>=2√(a/b*b/a)=2
a/c+c/a>=2√(a/c*c/a)=2
b/c+c/b>=2√(b/c*c/b)=2
所以1/a+1/b+1/c=3+(a/b+b/a)+(a/c+c/a)+(b/c+c/b)>=3+2+2+2=9
1/a+1/b+1/c
=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
=3+(a/b+b/a)+(a/c+c/a)+(b/c+c/b)
而a.b.c∈R*,那么a/b>0 b/c>0 a/c>0
a/b+b/a>=2√(a/b*b/a)=2
a/c+c/a>=2√(a/c*c/a)=2
b/c+c/b>=2√(b/c*c/b)=2
所以1/a+1/b+1/c=3+(a/b+b/a)+(a/c+c/a)+(b/c+c/b)>=3+2+2+2=9
更多追问追答
追问
1/a+1/b+1/c
=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c
=3+(a/b+b/a)+(a/c+c/a)+(b/c+c/b)
这个为什么。。求解
追答
a+b+c=1
所以1/a=(a+b+c)/a=(1+b/a+c/a)
所以1/a+1/b+1/c=(a+b+c)/a+(a+b+c)/b+(a+b+c)/c=(1+b/a+c/a)+(1+a/b+c/b)+(1+a/c+b/c)
整理得=3+(a/b+b/a)+(c/a+a/c)+(b/c+c/b)
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询