n阶矩阵如何求其副对角线n次?
1个回答
展开全部
把矩阵对角化后,n次方的矩阵就是里面每个元素的n次方设一线性变换a,在基m下的矩阵为A,在基n下的矩阵为B,m到n的过渡矩阵为X,那么可以证明:B=X⁻¹AX那么定义:A,B是2个矩阵。如果存在可逆矩阵X,满足B=X⁻¹AX。
要注意若乘积有意义,副对角线的每个子块都是同阶方阵才能相乘,所以一般不讨论分块矩阵副对角线的n次方。分块矩阵是一个矩阵, 它是把矩阵分别按照横竖分割成一些小的子矩阵 。 然后把每个小矩阵看成一个元素。
相关定义:
在数学中,矩阵(Matrix)是一个按照长方阵列排列的复数或实数集合,最早来自于方程组的系数及常数所构成的方阵。这一概念由19世纪英国数学家凯利首先提出。
作为解决线性方程的工具,矩阵也有不短的历史。成书最迟在东汉前期的《九章算术》中,用分离系数法表示线性方程组,得到了其增广矩阵。
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询