设cosα=1/7,cos(α+β)=-11/14,α∈(0,π/2),α+β∈(π/2,π),求β

anonymous101
2012-06-07 · TA获得超过3.5万个赞
知道大有可为答主
回答量:3283
采纳率:66%
帮助的人:3302万
展开全部
解:β = π/3 。过程如下:

由已知可得 sinα = 4(根号3)/7,sin(α+β)= 5(根号3)/14,
cos(α+β)=cosαcosβ - sinαsinβ= (1/7)cosβ - 4(根号3)/7·sinβ = -11/14,
sin(α+β)=sinαcosβ + cosαsinβ= 4(根号3)/7·cosβ + (1/7)sinβ = 5(根号3)/14
解上述关于 sinβ、cosβ 的二元一次方程组,得
sinβ = (根号3)/2、cosβ = 1/2。
又(α+β)∈(π/2,π), 所以 β = π/3 。
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式