不定积分∫e^(-x^2-y^2)dx的几种形式
1个回答
展开全部
具体回答如下:
原式=∫e^(-x^2)dx
=∫∫e^(-x^2-y^2) dxdy
=∫∫e^(-r^2) rdrdα
=(∫e^(-r^2) rdr)*(∫dα)
=π*∫e^(-r^2) dr^2
=π*(1-e^(-r^2) |r->+∝
=π
∵ ∫∫e^(-x^2-y^2) dxdy
=(∫e^(-x^2)dx)*(∫e^(-y^2)dy)
=(∫e^(-x^2)dx)^2
∴∫e^(-x^2)dx=√π
不定积分的意义:
一个函数,可以存在不定积分,而不存在定积分,也可以存在定积分,而没有不定积分。连续函数,一定存在定积分和不定积分。
若在有限区间[a,b]上只有有限个间断点且函数有界,则定积分存在;若有跳跃、可去、无穷间断点,则原函数一定不存在,即不定积分一定不存在。
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询