在△ABC中∠C=2∠B,AD是△ABC的角平分线求证AB=AC+CD
展开全部
证明:在AB上截取AE,使AE = AC,连DE。
∵ AD平分∠CAB
∴ ∠CAD = ∠EAD
在△CAD 和 △EAD 中
AC = AE
∠CAD = ∠EAD
AD = AD
∴△CAD ≌ △EAD (SAS)
∴ ∠AED = ∠C 且 CD = ED --------------------- ①
∵ ∠C = 2∠B
∴ ∠AED = 2 ∠B ------------------ ②
∵ ∠AED + ∠DEB = 180° (平角)
又∵(∠EDB+∠B)+ ∠DEB = 180° (三角形内角和)
∴ ∠AED = ∠EDB+∠B -------------------- ③
由②③知:2 ∠B = ∠EDB+∠B
∴ ∠B = ∠EDB
∴ ED = EB (等角对等边)----------------------- ④
由①④知:CD = EB
∴ AB = AE + EB
= AC + CD
∵ AD平分∠CAB
∴ ∠CAD = ∠EAD
在△CAD 和 △EAD 中
AC = AE
∠CAD = ∠EAD
AD = AD
∴△CAD ≌ △EAD (SAS)
∴ ∠AED = ∠C 且 CD = ED --------------------- ①
∵ ∠C = 2∠B
∴ ∠AED = 2 ∠B ------------------ ②
∵ ∠AED + ∠DEB = 180° (平角)
又∵(∠EDB+∠B)+ ∠DEB = 180° (三角形内角和)
∴ ∠AED = ∠EDB+∠B -------------------- ③
由②③知:2 ∠B = ∠EDB+∠B
∴ ∠B = ∠EDB
∴ ED = EB (等角对等边)----------------------- ④
由①④知:CD = EB
∴ AB = AE + EB
= AC + CD
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询