关于数学的小故事
当数学知识以故事的面貌出现时
原本学不进去的,不知不觉中就烙进了记忆里。
在人类社会漫长的历史河流中,曾经出现过无数让人印象深刻的故事,关于艺术,关于战争,关于宗教,关于权力的更迭和朝代的兴替。而自古就被世界各国所重视的数学,也在故事中留下了浓墨重彩的一笔。
今天叶子老师要给大家带来的是,历史中那些有趣的数学故事,家长朋友可以讲给孩子听,作为常规数学学习的补充。
相信下面这几个故事,一定能带给孩子不一样的启发。
泰勒斯智测金字塔
1、泰勒斯是古希腊有名的智者,某一天,泰勒斯看到人们都在看告示,便上去看。原来告示上写着法老要找世界上最聪明的人来测量金字塔的高度。于是泰勒斯就找法老。
请点击输入图片描述
法老问泰勒斯用什么工具来量金字塔。泰勒斯说只用一根木棍和一把尺子,他把木棍插在金字塔旁边,等木棍的影子和木棍一样长的时候,他量了金字塔影子的长度和金字塔底面边长的一半。把这两个长度加起来就是金字塔的高度了。
就这样,泰勒斯不用爬到金字塔的顶上就量出了金字塔的高度。
这样的智慧,哪怕放到现在,也足以令人惊叹。
请点击输入图片描述
田忌赛马
战国时期,齐威王与大将田忌赛马,齐威王和田忌各有三匹好马:上马,中马与下马。比赛分三次进行,每赛马以千金作赌。由于两者的马力相差无几,而齐威王的马分别比田忌的相应等级的马要好,所以一般人都以为田忌必输无疑。
请点击输入图片描述
但是田忌采纳了门客孙膑(军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。这是我国古代运用对策论思想解决问题的一个范例。
阿基米德称王冠
国王做了一顶金王冠,他怀疑工匠用银子偷换了一部分金子,便要阿基米德鉴定它是不是纯金制的,且不能损坏王冠。阿基米德捧着这顶王冠整天苦苦思索,有一天,阿基米德去浴室洗澡,他跨入浴桶,随着身子浸入浴桶,一部分水就从桶边溢出,阿基米德看到这个现象,头脑中像闪过一道闪电,“我找到了!”
请点击输入图片描述
阿基米德拿一块金块和一块重量相等的银块,分别放入一个盛满水的容器中,发现银块排出的水多得多。于是阿基米德拿了与王冠重量相等的金块,放入盛满水的容器里,测出排出的水量;再把王冠放入盛满水的容器里,看看排出的水量是否一样,问题就解决了。随着进一步研究,沿用至今的流体力学最重要基石——阿基米德定律诞生了。
请点击输入图片描述
高斯巧算1+2+3+4+...+10
当高斯还在上小学二年级的时候,有一天他的数学老师因为想借上课的时间处理一些自己的私事,因此打算出一道难题给学生练习。他的题目是:
1+2+3+4+5+6+7+8+9+10=?
因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的。自己也就可以藉此机会来处理未完的事情。但是才一转眼的时间,高斯已停下了笔,闲闲地坐在那里。老师看了,很生气地训斥高斯。
请点击输入图片描述
但是高斯却说他已经将答案算出来了,就是55。老师听了吓了一跳,就问高斯如何算出来的。高斯答道:“我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又因为11+11+11+11+11=55,所以我就是这么算出来了。”老师同学听了以后,都对高斯竖起了大拇指。后来的高斯长大后,成为了一位很伟大的数学家。
鸡兔同笼
鸡兔同笼这个问题,是我国古代着名趣题之一。大约在1500年前,《孙子算经》就记载了这个有趣的问题。书中是这样叙述的:今有鸡兔同笼,上有三十五头,下有九十四足,问鸡兔各几何?
这四句话的意思是:有若干只鸡兔同在一个笼子里,从上面数,有35个头;从下面数,有94只脚。求笼中各有几只鸡和兔?你会解答这个问题吗?你想知道《孙子算经》中是如何解答这个问题的吗?
请点击输入图片描述
解答思路是这样的:假如砍去每只鸡、每只兔一半的脚,则每只鸡就变成了“独角鸡”,每只兔就变成了“双脚兔”。这样,(1)鸡和兔的脚的总数就由94只变成了47只;(2)如果笼子里有一只兔子,则脚的总数就比头的总数多1。 因此,脚的总只数47与总头数35的差,就是兔子的只数,即47-35=12(只)。显然,鸡的只数就是35-12=23(只)了。
这一思路新颖而奇特,其“砍足法”也令古今中外数学家赞叹不已。这种思维方法叫化归法。化归法就是在解决问题时,先不对问题采取直接的分析,而是将题中的条件或问题进行变形,使之转化,直到最终把它归成某个已经解决的问题。
0与罗马教皇的爱恨情仇
大约1500年前,欧洲的数学家们是不知道用“0”的。他们使用罗马数字。罗马数字是用几个表示数的符号,按照一定规则,把它们组合起来表示不同的数目。在这种数字的运用里,不需要“0”这个数字。
而在当时,罗马帝国有一位学者从印度记数法里发现了“0”这个符号。他发现,有了“0”,进行数学运算方便极了,他非常高兴,还把印度人使用“0”的方法向大家做了介绍。过了一段时间,这件事被当时的罗马教皇知道了。
当时是欧洲的中世纪,教会的势力非常大,罗马教皇的权利更是远远超过皇帝。教皇非常恼怒,他斥责说,神圣的数是上帝创造的,在上帝创造的数里没有“0”这个怪物,如今谁要把它给引进来,谁就是亵渎上帝!
于是,教皇就下令,把这位学者抓了起来,并对他施加了酷刑,用夹子把他的十个手指头紧紧夹注,使他两手残废,让他再也不能握笔写字。就这样,“0”被那个愚昧、残忍的罗马教皇明令禁止了。
但是,虽然“0”被禁止使用,然而罗马的数学家们还是不管禁令,在数学的研究中仍然秘密地使用“0”,仍然用“0”做出了很多数学上的贡献。后来“0”终于在欧洲被广泛使用,而罗马数字却逐渐被淘汰了。
2018-07-31 · 知道合伙人教育行家
但是田忌采纳了门客孙膑(着名军事家)的意见,用下马对齐威王的上马,用上马对齐威王的中马,用中马对齐威王的下马,结果田忌以2比1胜齐威王而得千金。这是我国古代运用对策论思想解决问题的一个范例。
趣味数学故事(2):
当高斯还在上小学二年级的时候,有一天他的数学老师因为想借上课的时光处理一些自我的私事,因此打算出一道难题给学生练习。他的题目是:
1+2+3+4+5+6+7+8+9+10=?
因为加法刚教不久,所以老师觉得出了这题,学生肯定是要算蛮久的。自我也就能够藉此机会来处理未完的事情。但是才一转眼的时光,高斯已停下了笔,闲闲地坐在那里。老师看了,很生气地训斥高斯。
但是高斯却说他已经将答案算出来了,就是55。老师听了吓了一跳,就问高斯如何算出来的。高斯答道:“我只是发现1和10的和是11、2和9的和也是11、3和8的和也是11、4和7的和也是11、5和6的和还是11,又因为11+11+11+11+11=55,所以我就是这么算出来了。”老师同学听了以后,都对高斯竖起了大拇指。之后的高斯长大后,成为了一位很伟大的数学家。
远处,一座雄伟的宫殿突破了朦胧的青色雾霭,傲然屹立在陡峭的山峰上。这景象既庄严辉煌,又奇诡神秘。丁丁和东东激动不已,他们一路艰辛终于找到了崇尚魔法的维克伊国,在这个与世隔绝的国度里,人人都是出色的魔法师,当然他们的数学也非常好。
丁丁和东东来到了维克伊国。此时,东东很害怕,因为他在学校里总是上课不认真听讲,课后又不完成作业,而维克伊国的人个个都精通数学,东东实在是太怕被维克伊国的人骗了。可现在害怕又有什么用呢?此时,丁丁很高兴,因为他数学学得很好。
维克伊国的街上很是热闹。有卖布的,有卖菜的,还有卖肉的,……丁丁和东东突然觉得肚子很饿,他们就跑到一家面包房。
虽然面包房里是卖面包,但是面包是不要钱的。“那怎样才能吃到面包呢?”丁丁和东东问面包店的店主。“你们看没看见面包上写着一道数学题?那上面不是说算出这道题面包就归你们吗?”“啊!原来这么简单就能吃到面包啊!”丁丁说着就抓起面包看上面的题目,不一会儿就算出来了,而站在旁边的东东怎么也算不出来。丁丁做完了题就拿起面包走了,东东跟在丁丁的后面,问丁丁面包上那道题是怎么做的。丁丁说:“那道数学题目是这样的:‘4台织布机5小时可以织布2600米,24台织布机8小时共能织布多少米?’我们先看第一个条件,第一个条件告诉我们4台织布机5小时织2600米布,那么我们就可以求出1台织布机1小时能织出多少米布,也就是‘2600除以5,等于520(米),520除以4,等于130(米)。’我们算出了1台织布机1小时织130米布,接下来就很简单了,你自己想想吧!”
接下来真的很简单,东东一会儿也算出来了。
丁丁和东东在维克伊国游玩了好多地方,碰到了许多数学题,东东知道了数学的重要性。回国以后,东东认真学数学,数学学的越来越好!
--------------------------------------------------------------------------------
好朋友
最近“数学商店”来了一位新服务员,它就是小“4”。
一天,小“3”到数学商店买了一支铅笔,小“4”说:“你应付1元5角4分。”
小“3”付了1元5角后问:“还有4分可怎么付呀?”小“4”忙说:“这4分钱你不用付了。”小“3”疑惑地问道:“那你不是要吃亏了?”“不,这是本店的一个规定,叫‘四舍五入’。凡是4分钱或4分钱以下都舍去,如果是5分或5分钱以上,那就收1角钱。”小“4”和蔼可亲地解释道。小“3”高兴地说:“谢谢你,你真好!”
“对呀,我也特别喜欢4。”“25”跑过来说,“因为25×4=100,算起来比较简便,例如:25×87×4=25×4×87,这样算起来不是又快又简便吗?!”
“不错,的确又快又简便,我也喜欢4。”原来是“29”。“25”忙问道:“咦,你怎么也会喜欢‘4’了?”“29”不慌不忙地说:“这你们就不知道了,一般年份里的2月份都是28天,只有公历年份是4的倍数的那一年,二月份才是29天,我4年才轮到一次,当然喜欢‘4’了。不过公历年份是整百的,必须是4百的倍数,二月份才有29天,这样的年份叫闰年。”
“啊,‘4’的用处可真大呀!”“25”赞叹道。
这位“4”服务员真是个既温柔又惹人喜欢的服务员。
伽罗华生于离巴黎不远的一个小城镇,父亲是学校校长,还当过多年市长。家庭的影响使伽罗华一向勇往直前,无所畏惧。1823年,12岁的伽罗华离开双亲到巴黎求学,他不满足呆板的课堂灌输,自己去找最难的数学原著研究,一些老师也给他很大帮助。老师们对他的评价是“只宜在数学的尖端领域里工作”。
阿基米德公元前287年出生在意大利半岛南端西西里岛的叙拉古。父亲是位数学家兼天文学家。阿基米德从小有良好的家庭教养,11岁就被送到当时希腊文化中心的亚历山大城去学习。在这座号称"智慧之都"的名城里,阿基米德博阅群书,汲取了许多的知识,并且做了欧几里得学生埃拉托塞和卡农的门生,钻研《几何原本》。
祖冲之在数学上的杰出成就,是关于圆周率的计算.秦汉以前,人们以"径一周三"做为圆周率,这就是"古率".后来发现古率误差太大,圆周率应是"圆径一而周三有余",不过究竟余多少,意见不一.直到三国时期,刘徽提出了计算圆周率的科学方法--"割圆术",用圆内接正多边形的周长来逼近圆周长.刘徽计算到圆内接96边形,
求得π=3.14,并指出,内接正多边形的边数越多,所求得的π值越精确.祖冲之在前人成就的基础上,经过刻苦钻研,反复演算,求出π在3.1415926与3.1415927之间.并得出了π分数形式的近似值,取为约率
,取为密率,其中取六位小数是3.141929,它是分子分母在1000以内最接近π值的分数.祖冲之究竟用什么方法得出这一结果,现在无从考查.若设想他按刘徽的"割圆术"方法去求的话,就要计算到圆内接16,384边形,这需要化费多少时间和付出多么巨大的劳动啊!由此可见他在治学上的顽强毅力和聪敏才智是令人钦佩的.祖冲之计算得出的密率,
外国数学家获得同样结果,已是一千多年以后的事了.为了纪念祖冲之的杰出贡献,有些外国数学史家建议把π=叫做"祖率".
塞乐斯生于公元前624年,是古希腊第一位闻名世界的大数学家。他原是一位很精明的商人,靠卖橄榄油积累了相当财富后,塞乐斯便专心从事科学研究和旅行。他勤奋好学,同时又不迷信古人,勇于探索,勇于创造,积极思考问题。他的家乡离埃及不太远,所以他常去埃及旅行。在那里,塞乐斯认识了古埃及人在几千年间积累的丰富数学知识。他游历埃及时,曾用一种巧妙的方法算出了金字塔的高度,使古埃及国王阿美西斯钦羡不已