∫tanxdx的导数

 我来答
帐号已注销
2022-10-09 · TA获得超过82.9万个赞
知道大有可为答主
回答量:2602
采纳率:100%
帮助的人:169万
展开全部

∫tanxdx=-ln|cosx|+C。∫tanxdx=∫sinx/cosxdx=-∫(cosx)'/cosxdx=-∫(cosx)'dcosx=-ln|cosx|+C。

两个换元法的错误是一样的,dx换dt时,少了一步求导,应该是复合函数求导。相当于是这样的:y=f(u),u=g(x),dy/dx=dy/du×du/dx,你漏掉了du/dx这一步。

x=arccos(1/√t)分解为x=arccosu,u=1/√t,所以dx=-1/√(1-1/t)×(-1/2)×t^(-3/2)dt=1/2×1/t×1/√(t-1)dt。

所以,原积分=∫1/2×1/tdt=1/2×ln|t|+C=1/2×ln|1/(cosx)^2|+C=-ln|cosx|+C。

扩展资料:

积分是微分的逆运算,即知道了函数的导函数,反求原函数。在应用上,积分作用不仅如此,它被大量应用于求和,通俗的说是求曲边三角形的面积,这巧妙的求解方法是积分特殊的性质决定的。主要分为定积分、不定积分以及其他积分。积分的性质主要有线性性、保号性、极大值极小值、绝对连续性、绝对值积分等。

不定积分的积分公式主要有如下几类:

含ax+b的积分、含√(a+bx)的积分、含有x^2±α^2的积分、含有ax^2+b(a>0)的积分、含有√(a²+x^2) (a>0)的积分、含有√(a^2-x^2) (a>0)的积分、含有√(|a|x^2+bx+c) (a≠0)的积分。

含有三角函数的积分、含有反三角函数的积分、含有指数函数的积分、含有对数函数的积分、含有双曲函数的积分。

含有a+bx的积分公式主要有以下几类:

含有√(a+bx)的积分公式主要包含有以下几类:

参考资料:百度百科——积分

已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式