3个回答
展开全部
已知:如图,△ABC是边长3cm的等边三角形,动点P、Q同时从A、B两点出发,分别沿AB、BC方向匀速移动,它们的速度都是1cm/s,当点P到达点B时,P、Q两点停止运动.设点P的运动时间为t(s),解答下列问题:
(1)当t为何值时,△PBQ是直角三角形?
(2)设四边形APQC的面积为y(cm2),求y与t的关系式;是否存在某一时刻t,使四边形APQC的面积是△ABC面积的三分之二?如果存在,求出相应的t值;不存在,说明理由;
(3)设PQ的长为x(cm),试确定y与x之间的关系式.
解:⑴ 根据题意:AP=t cm,BQ=t cm. △ABC中,AB=BC=3cm,∠B=60°, ∴BP=(3-t ) cm.
△PBQ中,BP=3-t,BQ=t,
若△PBQ是直角三角形,则∠BQP=90°或∠BPQ=90°.
当∠BQP=90°时,BQ=1/2BP.
即t=1/2(3-t ),
t=1 (秒).
当∠BPQ=90°时,BP=1/2BQ.
即3-t=1/2t,
t=2 (秒).
答:当t=1秒或t=2秒时,△PBQ是直角三角形. „„„„„„„4′
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
展开全部
这样的条件所引发的题目太多了,请将别的条件补充上,那就好了。呵呵
已赞过
已踩过<
评论
收起
你对这个回答的评价是?
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询