证明:方程 x^3+x-1=0 在(0,1)至少有一个实根.

 我来答
机器1718
2022-08-11 · TA获得超过6802个赞
知道小有建树答主
回答量:2805
采纳率:99%
帮助的人:158万
展开全部
基本同意一楼回答,不过一楼多做了一些不必要的步骤.
令f(x)=x^3+x-1 ,显然该函数在实数上连续,又f(0)0,由零点定理即得存在ξ∈(0,1),使得f(ξ)=0
已赞过 已踩过<
你对这个回答的评价是?
评论 收起
推荐律师服务: 若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询

为你推荐:

下载百度知道APP,抢鲜体验
使用百度知道APP,立即抢鲜体验。你的手机镜头里或许有别人想知道的答案。
扫描二维码下载
×

类别

我们会通过消息、邮箱等方式尽快将举报结果通知您。

说明

0/200

提交
取消

辅 助

模 式