已知数列{an}的首项a1=1,前n项和满足Sn=[(n+2)/3]an,求{an}
2个回答
展开全部
当n >= 2时,依题意有
Sn-1=[(n+1)/3]an-1 (2)
又Sn=[(n+2)/3]an (1)
(1)-(2)得
a(n) = (1/3)(a(n) - a(n-1))
即a(n) = (-1/2)a(n-1)
当n = 2 时 s2 = a1 + a2 = (4/3)a2
解得a2 = 3
所以当n >=2 时,{an}是以a2 = 3为首项,等比为(-1/2)的等比数列
an = 3(-1/2)^n (n >= 2)
当n = 1时,an = 1
Sn-1=[(n+1)/3]an-1 (2)
又Sn=[(n+2)/3]an (1)
(1)-(2)得
a(n) = (1/3)(a(n) - a(n-1))
即a(n) = (-1/2)a(n-1)
当n = 2 时 s2 = a1 + a2 = (4/3)a2
解得a2 = 3
所以当n >=2 时,{an}是以a2 = 3为首项,等比为(-1/2)的等比数列
an = 3(-1/2)^n (n >= 2)
当n = 1时,an = 1
更多追问追答
追问
(1)-(2)得
a(n) = (1/3)(a(n) - a(n-1))
即a(n) = (-1/2)a(n-1)
请问这是怎么算的,我算的(1)-(2)结果是a(n)=[(n+1)/(n-1)]a(n-1)
追答
[(n+2)/3] - [(n + 1) /3] = 1/3
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询