如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(—1,0)、B(0,—3)两点,
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(—1,0)、B(0,—3)两点,与x轴交于另一点B.(1)求这条抛物线所对应的函数关系式;...
如图,已知抛物线y=ax2+bx+c(a≠0)的对称轴为x=1,且抛物线经过A(—1,0)、B(0,—3)两点,与x轴交于另一点B.
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;
(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标. 展开
(1)求这条抛物线所对应的函数关系式;
(2)在抛物线的对称轴x=1上求一点M,使点M到点A的距离与到点C的距离之和最小,并求出此时点M的坐标;
(3)设点P为抛物线的对称轴x=1上的一动点,求使∠PCB=90°的点P的坐标. 展开
2个回答
展开全部
解:(1)∵抛物线的对称轴为x=1,且A(-1,0),
∴B(3,0);
可设抛物线的解析式为y=a(x+1)(x-3),由于抛物线经过C(0,-3),
则有:a(0+1)(0-3)=-3,a=1;
∴y=(x+1)(x-3)=x2-2x-3;
(2)由于A、B关于抛物线的对称轴直线x=1对称,
那么M点为直线BC与x=1的交点;
由于直线BC经过C(0,-3),可设其解析式为y=kx-3,
则有:3k-3=0,k=1;
∴直线BC的解析式为y=x-3;
当x=1时,y=x-3=-2,
即M(1,-2);
(3)设经过C点且与直线BC垂直的直线为直线l,作PD⊥y轴,垂足为D;
∵OB=OC=3,
∴CD=DP=1,OD=OC+CD=4,
∴P(1,-4).
∴B(3,0);
可设抛物线的解析式为y=a(x+1)(x-3),由于抛物线经过C(0,-3),
则有:a(0+1)(0-3)=-3,a=1;
∴y=(x+1)(x-3)=x2-2x-3;
(2)由于A、B关于抛物线的对称轴直线x=1对称,
那么M点为直线BC与x=1的交点;
由于直线BC经过C(0,-3),可设其解析式为y=kx-3,
则有:3k-3=0,k=1;
∴直线BC的解析式为y=x-3;
当x=1时,y=x-3=-2,
即M(1,-2);
(3)设经过C点且与直线BC垂直的直线为直线l,作PD⊥y轴,垂足为D;
∵OB=OC=3,
∴CD=DP=1,OD=OC+CD=4,
∴P(1,-4).
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询