高一数学知识点总结归纳
在学习过程中知识的总结往往很重要,那么高一数学知识点归纳有哪些呢?下面是由我为大家整理的“高一数学知识点总结归纳”,仅供参考,欢迎大家阅读。
高一数学知识点归纳总结
第一章:集合与函数概念
一、集合有关概念
1.集合的含义
2.集合的中元素的三个特性:
(1)元素的确定性如:世界上的山;
(2)元素的互异性如:由HAPPY的字母组成的集合{H,A,P,Y};
(3)元素的无序性:如:{a,b,c}和{a,c,b}是表示同一个集合。
3.集合的表示:{…}如:{我校的篮球队员},{太平洋,大西洋,印度洋,北冰洋};
(1)用拉丁字母表示集合:A={我校的篮球队员},B={1,2,3,4,5};
(2)集合的表示方法:列举法与描述法。
注意:常用数集及其记法:XKb1.Com。
非负整数集(即自然数集)记作:N;
正整数集:N*或N+;
整数集:Z;
有理数集:Q;
实数集:R;
1)列举法:{a,b,c……};
2)描述法:将集合中的元素的公共属性描述出来,写在大括号内表示集合{xÎR|x-3>2},{x|x-3>2};
3)语言描述法:例:{不是直角三角形的三角形};
4)Venn图:
4、集合的分类:
(1)有限集含有有限个元素的集合;
(2)无限集含有无限个元素的集合;
(3)空集不含任何元素的集合例:{x|x2=-5}。
二、集合间的基本关系
1.“包含”关系—子集
注意:有两种可能。
(1)A是B的一部分;
(2)A与B是同一集合。
反之:集合A不包含于集合B,或集合B不包含集合A,记作AB或BA;
2.“相等”关系:A=B(5≥5,且5≤5,则5=5)实。
例:设A={x|x2-1=0}B={-1,1}“元素相同则两集合相等”
即:
①任何一个集合是它本身的子集。
②真子集:如果AíB,且A1B那就说集合A是集合B的真子集,记作AB(或BA)
③如果AíB,BíC,那么AíC;
④如果AíB同时BíA那么A=B;
3.不含任何元素的集合叫做空集,记为Φ;
规定:空集是任何集合的子集,空集是任何非空集合的真子集。
4.子集个数:
有n个元素的集合,含有2n个子集,2n-1个真子集,含有2n-1个非空子集,含有2n-1个非空真子集
三、集合的运算
运算类型交集并集补集;
定义由所有属于A且属于B的元素所组成的集合,叫做A,B的交集.记作AB(读作‘A交B’),即AB={x|xA,且xB};
由所有属于集合A或属于集合B的元素所组成的集合,叫做A,B的并集.记作:AB(读作‘A并B’),即AB={x|xA,或xB});
第二章:基本初等函数
一、指数函数
(一)指数与指数幂的运算
1.根式的概念:一般地,如果,那么叫做的次方根(nthroot),其中>1,且∈*。
当是奇数时,正数的次方根是一个正数,负数的次方根是一个负数.此时,的次方根用符号表示.式子叫做根式(radical),这里叫做根指数(radicalexponent),叫做被开方数(radicand)。
当是偶数时,正数的次方根有两个,这两个数互为相反数.此时,正数的正的次方根用符号表示,负的次方根用符号-表示.正的次方根与负的次方根可以合并成±(>0)。由此可得:负数没有偶次方根;0的任何次方根都是0,记作。
注意:当是奇数时,当是偶数时。
2.分数指数幂
正数的分数指数幂的意义,规定:
0的正分数指数幂等于0,0的负分数指数幂没有意义;
指出:规定了分数指数幂的意义后,指数的概念就从整数指数推广到了有理数指数,那么整数指数幂的运算性质也同样可以推广到有理数指数幂。
3.实数指数幂的运算性质
(二)指数函数及其性质
1、指数函数的概念:一般地,函数叫做指数函数(exponential),其中x是自变量,函数的定义域为R。
注意:指数函数的底数的取值范围,底数不能是负数、零和1。
2、指数函数的图象和性质。
第三章:第三章函数的应用
1、函数零点的概念:对于函数,把使成立的实数叫做函数的零点。
2、函数零点的意义:函数的零点就是方程实数根,亦即函数的图象与轴交点的横坐标。即:
方程有实数根函数的图象与轴有交点函数有零点。
3、函数零点的求法:
求函数的零点:
(1)(代数法)求方程的实数根;
(2)(几何法)对于不能用求根公式的方程,可以将它与函数的图象联系起来,并利用函数的性质找出零点。
4、二次函数的零点:
二次函数
1)△>0,方程有两不等实根,二次函数的图象与轴有两个交点,二次函数有两个零点.2)△=0,方程有两相等实根(二重根),二次函数的图象与轴有一个交点,二次函数有一个二重零点或二阶零点。
3)△<0,方程无实根,二次函数的图象与轴无交点,二次函数无零点。
拓展阅读:如何学好高中数学
读好课本,学会研究
有些“自我感觉良好”的学生,常轻视课本中基础知识、基本技能和基本方法的学习与训练,经常是知道怎么做就算了,而不去认真演算书写,但对难题很感兴趣,以显示自己的“水平”,好高骛远,重“量”轻“质”,陷入题海,到正规作业或考试中不是演算出错就是中途“卡壳”。因此,同学们应从高一开始,增强自己从课本入手进行研究的意识。可以把每条定理、每道例题都当作习题,认真地重证、重解,并适当加些批注,特别是通过对典型例题的讲解分析,最后要抽象出解决这类问题的数学思想和方法,并做好书面的解题后的反思,总结出解题的一般规律和特殊规律,以便推广和灵活运用。另外,学生要尽可能独立解题,因为求解过程,也是培养分析问题和解决问题能力的一个过程,同时更是一个研究过程。
记好笔记,注重课堂
首先,在课堂教学中培养好的听课习惯是很重要的。当然听是主要的,听能使注意力集中,要把老师讲的关键性部分听懂、听会。听的时候注意思考、分析问题,但是光听不记,或光记不听必然顾此失彼,课堂效益低下,因此应适当地有目的性的记好笔记,领会课上老师的主要精神与意图。科学的记笔记可以提高45分钟课堂效益。
其次,要提高数学能力,当然是通过课堂来提高,要充分利用好课堂这块阵地,学习数学的过程是活的,老师教学的对象也是活的,都在随着教学过程的发展而变化,尤其是当老师注重能力教学的时候,教材是反映不出来的。数学能力是随着知识的发生而同时形成的,无论是形成一个概念,掌握一条法则,会做一个习题,都应该从不同的能力角度来培养和提高。课堂上通过老师的教学,理解所学内容在教材中的地位,弄清与前后知识的联系等,只有把握住教材,才能掌握学习的主动。
最后,在数学课堂中,老师一般少不了提问与板演,有时还伴随着问题讨论,因此可以听到许多的信息,这些问题是很有价值的。对于那些典型问题,带有普遍性的问题都必须及时解决,不能把问题的结症遗留下来,甚至沉淀下来,有价值的问题要及时抓住,遗留问题要有针对性地补,注重实效。
写好总结,把握规律
一个人不断接受新知识,不断遭遇挫折产生疑问,不断地总结,才有不断地提高。"不会总结的同学,他的能力就不会提高,挫折经验是成功的基石。"自然界适者生存的生物进化过程便是最好的例证。学习要经常总结规律,目的就是为了更一步的发展。通过与老师、同学平时的接触交流,逐步总结出一般性的学习步骤,它包括:制定计划、课前自学、专心上课、及时复习、独立作业、解决疑难、系统小结和课外学习几个方面,简单概括为四个环节(预习、上课、整理、作业)和一个步骤(复习总结)。每一个环节都有较深刻的内容,带有较强的目的性、针对性,要落实到位。坚持“两先两后一小结”(先预习后听课,先复习后做作业,写好每个单元的总结)的学习习惯。
广告 您可能关注的内容 |