过椭圆(x^2)/16+(y^2)/4=1内一点M(2,1)引一条弦,使弦被M平分,求此弦的直线方程 10
1个回答
展开全部
设弦AB,A(x1,y1),B(x2,y2),
∵A、B均在椭圆上,
∴x1^2/16+y1^2/4=1,(1)
x2^2/16+y2^2/4=1,(2)
(1)-(2)式,
(x1^2-x2^2)/16+(y1^2-y2^2)/4=1,
1/4+[(y1-y2)/(x1-x2)]*[(y1+y2)/2]/[(x1+x2)/2]=0,
其中(y1-y2)/(x1-x2)为直线的斜率k,
(y1+y2)/2,(x1+x2)/2为AB中点M的纵、横坐标,
1/4+k*(1/2)=0,
∴k=-1/2,
∴弦直线方程为:(y-1)/(x-2)=-1/2,
即:x+2y-4=0.
∵A、B均在椭圆上,
∴x1^2/16+y1^2/4=1,(1)
x2^2/16+y2^2/4=1,(2)
(1)-(2)式,
(x1^2-x2^2)/16+(y1^2-y2^2)/4=1,
1/4+[(y1-y2)/(x1-x2)]*[(y1+y2)/2]/[(x1+x2)/2]=0,
其中(y1-y2)/(x1-x2)为直线的斜率k,
(y1+y2)/2,(x1+x2)/2为AB中点M的纵、横坐标,
1/4+k*(1/2)=0,
∴k=-1/2,
∴弦直线方程为:(y-1)/(x-2)=-1/2,
即:x+2y-4=0.
推荐律师服务:
若未解决您的问题,请您详细描述您的问题,通过百度律临进行免费专业咨询